140 research outputs found

    Capture the growth kinetics of CVD growth of two-dimensional MoS 2

    Get PDF
    Understanding the microscopic mechanism is fundamental for function-oriented controlled chemical vapor deposition growth of two-dimensional (2D) materials. In this work, we reveal the growth kinetics of 2D MoS2 by capturing the nucleation seeds, evolving morphology, edge structure, and edge terminations at the atomic scale during chemical vapor deposition growth using the transmission electron microscopy and scanning transmission electron microscopy. The direct growth of few-layer and mono-layer MoS2 onto graphene-based transmission electron microscopy grids helped us to perform the subsequent transmission electron microscopy characterization without any solution-based transfer. Two seeding centers are observed: (i) Mo-oxysulfide (MoO x S2−y ) nanoparticles either in multi-shelled fullerene-like structures or as compact nanocrystals for the growth of fewer-layer MoS2; (ii) Mo-S atomic clusters. In the early stage growth, irregular polygons with two primary edge terminations, S-Mo Klein edges and Mo zigzag edges, appear approximately in equal numbers. The morphology evolves into a near-triangle shape in which Mo zigzag edges predominate. Results from density-functional theory calculations are consistent with the inferred growth kinetics, and thus support the growth mechanism we proposed. In general, the growth mechanisms found here should also be applicable in other 2D materials, such as MoSe2, WS2 and WSe2

    Degradation behaviors and mechanisms of MoS2 crystals relevant to bioabsorbable electronics

    Get PDF
    Monolayer molybdenum disulfide (MoS2) exhibits unique semiconducting and bioresorption properties, giving this material enormous potential for electronic/biomedical applications, such as bioabsorbable electronics. In this regard, understanding the degradation performance of monolayer MoS2 in biofluids allows modulation of the properties and lifetime of related bioabsorbable devices and systems. Herein, the degradation behaviors and mechanisms of monolayer MoS2 crystals with different misorientation angles are explored. High-angle grain boundaries (HAGBs) biodegrade faster than low-angle grain boundaries (LAGBs), exhibiting degraded edges with wedge and zigzag shapes, respectively. Triangular pits that formed in the degraded grains have orientations opposite to those of the parent crystals, and these pits grow into larger pits laterally. These behaviors indicate that the degradation is induced and propagated based on intrinsic defects, such as grain boundaries and point defects, because of their high chemical reactivity due to lattice breakage and the formation of dangling bonds. High densities of dislocations and point defects lead to high chemical reactivity and faster degradation. The structural cause of MoS2 degradation is studied, and a feasible approach to study changes in the properties and lifetime of MoS2 by controlling the defect type and density is presented. The results can thus be used to promote the widespread use of two-dimensional materials in bioabsorption applications

    Regenerative oscillation and four-wave mixing in graphene optoelectronics

    Full text link
    The unique linear and massless band structure of graphene, in a purely two-dimensional Dirac fermionic structure, have led to intense research spanning from condensed matter physics to nanoscale device applications covering the electrical, thermal, mechanical and optical domains. Here we report three consecutive first-observations in graphene-silicon hybrid optoelectronic devices: (1) ultralow power resonant optical bistability; (2) self-induced regenerative oscillations; and (3) coherent four-wave mixing, all at a few femtojoule cavity recirculating energies. These observations, in comparison with control measurements with solely monolithic silicon cavities, are enabled only by the dramatically-large and chi(3) nonlinearities in graphene and the large Q/V ratios in wavelength-localized photonic crystal cavities. These results demonstrate the feasibility and versatility of hybrid two-dimensional graphene-silicon nanophotonic devices for next-generation chip-scale ultrafast optical communications, radio-frequency optoelectronics, and all-optical signal processing.Comment: Accepted at Nature Photonics, July (2012

    Engineering grain boundaries at the 2D limit for the hydrogen evolution reaction

    Get PDF
    Atom-thin transition metal dichalcogenides (TMDs) have emerged as fascinating materials and key structures for electrocatalysis. So far, their edges, dopant heteroatoms and defects have been intensively explored as active sites for the hydrogen evolution reaction (HER) to split water. However, grain boundaries (GBs), a key type of defects in TMDs, have been overlooked due to their low density and large structural variations. Here, we demonstrate the synthesis of wafer-size atom-thin TMD films with an ultra-high-density of GBs, up to ~1012 cm−2. We propose a climb and drive 0D/2D interaction to explain the underlying growth mechanism. The electrocatalytic activity of the nanograin film is comprehensively examined by micro-electrochemical measurements, showing an excellent hydrogen-evolution performance (onset potential: −25 mV and Tafel slope: 54 mV dec−1), thus indicating an intrinsically high activation of the TMD GBs

    Large area chemical vapour deposition grown transition metal dichalcogenide monolayers automatically characterized through photoluminescence imaging

    Get PDF
    Chemical vapour deposition (CVD) growth is capable of producing multiple single-crystal islands of atomically thin transition metal dichalcogenides (TMDs) over large areas. Subsequent merging of perfectly epitaxial domains can lead to single-crystal monolayer sheets, a step towards scalable production of high quality TMDs. For CVD growth to be effectively harnessed for such production it is necessary to be able to rapidly assess the quality of material across entire large area substrates. To date, characterisation has been limited to sub-0.1-mm2 areas, where the properties measured are not necessarily representative of an entire sample. Here, we apply photoluminescence (PL) imaging and computer vision techniques to create an automated analysis for large area samples of monolayer TMDs, measuring the properties of island size, density of islands, relative PL intensity and homogeneity, and orientation of triangular domains. The analysis is applied to ×20 magnification optical microscopy images that completely map samples of WSe2 on hBN, 5.0 mm × 5.0 mm in size, and MoSe2–WS2 on SiO2/Si, 11.2 mm × 5.8 mm in size. Two prevailing orientations of epitaxial growth were observed in WSe2 grown on hBN and four predominant orientations were observed in MoSe2, initially grown on c-plane sapphire. The proposed analysis will greatly reduce the time needed to study freshly synthesised material over large area substrates and provide feedback to optimise growth conditions, advancing techniques to produce high quality TMD monolayer sheets for commercial applications
    corecore