1,208 research outputs found

    Introducing lignin as a binder material for the aqueous production of NMC111 cathodes for Li-ion batteries

    Get PDF
    By enabling water-based cathode processing, the energy-intensive N-methyl-2-pyrrolidone (NMP) recovery step can be eliminated, reducing the cost and environmental impact of LIBs. Aqueous processing of high capacity Ni-containing LiNixMn1−x−yCoyO2 (NMC) cathodes is problematic due to lithium-ion(Li+) leaching, corrosion of the aluminum (Al) current collector, and the lack of aqueous soluble bio-derived binders. The present study investigates the potential of substituting and fully replacing the commonly used polyvinylidene fluoride (PVDF) and carboxymethyl cellulose (CMC) binders with abundant, bio-derived kraft lignin. This paper gives a holistic overview of the optimal conditions when employing these binders. For the first time, we demonstrate that NMC111 cathodes of comparable specific capacities to NMP/PVDF-based ones over 100 cycles or at high C-rates (5C) can be formulated in water using lignin or CMC/lignin as binder materials. Cyclic voltammetry (CV) revealed that kraft lignin undergoes a redox reaction with the electrolyte between 2.8 and 4.5 V, which diminishes upon subsequent cycles. Differential scanning calorimetry (DSC) revealed that lignin is thermally stable up to 152 °C. Rheology measurements showed that replacing NMP with water allows for a solvent reduction. The cathodes fabricated using an aqueous slurry should be dried at 50 °C, as extensive surface cracks detected using scanning electron microscopy (SEM) diminish. Li+ leaching from NMC111 and NaOH species from kraft lignin caused an increase in pH during aqueous slurry fabrication. A carbon-coated Al foil (C-Al) prevented Al corrosion and increased the lignin cathode's mechanical strength revealing lignin's exceptional binding abilities to carbon. The electrolyte wettability decreased for calendered lignin-containing cathodes with low porosity and a large carbon black/lignin matrix

    Understanding Conditional Associations between ToxCast in Vitro Readouts and the Hepatotoxicity of Compounds Using Rule-Based Methods

    Get PDF
    Current in vitro models for hepatotoxicity commonly suffer from low detection rates due to incomplete coverage of bioactivity space. Additionally, in vivo exposure measures such as Cmax are used for hepatotoxicity screening which are unavailable early on. Here we propose a novel rule-based framework to extract interpretable and biologically meaningful multi-conditional associations to prioritize in vitro endpoints for hepatotoxicity and understand the associated physicochemical conditions. The data used in this study was derived for 673 compounds from 361 ToxCast bioactivity measurements and 29 calculated physicochemical properties against two lowest effective levels (LEL) of rodent hepatotoxicity from ToxRefDB, namely 15mg/kg/day and 500mg/kg/day. In order to achieve 80% coverage of toxic compounds, 35 rules with accuracies ranging from 96% to 73% using 39 unique ToxCast assays are needed at a threshold level of 500mg/kg/day, whereas to describe the same coverage at a threshold of 15mg/kg/day 20 rules with accuracies of between 98% and 81% were needed, comprising 24 unique assays. Despite the 33-fold difference in dose levels, we found relative consistency in the key mechanistic groups in rule clusters, namely i) activities against Cytochrome P, ii) immunological responses, and iii) nuclear receptor activities. Less specific effects, such as oxidative stress and cell cycle arrest, were used more by rules to describe toxicity at the level of 500mg/kg/day. Although the endocrine disruption through nuclear receptor activity formulated an essential cluster of rules, this bioactivity is not covered in four commercial assay setups for hepatotoxicity. Using an external set of 29 drugs with drug-induced liver injury (DILI) labels, we found promiscuity over important assays discriminates between compounds with different levels of liver injury. In vitro-in vivo associations were also improved by incorporating physicochemical properties especially for the potent, 15mg/kg/day toxicity level, as well for assays describing nuclear receptor activity and phenotypic changes. The most frequently used physicochemical properties, predictive for hepatotoxicity in combination with assay activities, are linked to bioavailability, which were the number of rotatable bonds (less than 7) at a of level of 15mg/kg/day, and the number of rings (of less than 3) at level of 500mg/kg/day. In summary, hepatotoxicity cannot very well be captured by single assay endpoints, but better by a combination of bioactivities in relevant assays, with the likelihood of hepatotoxicity increasing with assay promiscuity. Together these findings can be used to prioritize assay combinations which are appropriate to assess potential hepatotoxicity

    Maximizing gain in high-throughput screening using conformal prediction

    Get PDF
    Iterative screening has emerged as a promising approach to increase the efficiency of screening campaigns compared to traditional high throughput approaches. By learning from a subset of the compound library, inferences on what compounds to screen next can be made by predictive models, resulting in more efficient screening. One way to evaluate screening is to consider the cost of screening compared to the gain associated with finding an active compound. In this work, we introduce a conformal predictor coupled with a gain-cost function with the aim to maximise gain in iterative screening. Using this setup we were able to show that by evaluating the predictions on the training data, very accurate predictions on what settings will produce the highest gain on the test data can be made. We evaluate the approach on 12 bioactivity datasets from PubChem training the models using 20% of the data. Depending on the settings of the gain-cost function, the settings generating the maximum gain were accurately identified in 8–10 out of the 12 datasets. Broadly, our approach can predict what strategy generates the highest gain based on the results of the cost-gain evaluation: to screen the compounds predicted to be active, to screen all the remaining data, or not to screen any additional compounds. When the algorithm indicates that the predicted active compounds should be screened, our approach also indicates what confidence level to apply in order to maximize gain. Hence, our approach facilitates decision-making and allocation of the resources where they deliver the most value by indicating in advance the likely outcome of a screening campaign.The research at Swetox (UN) was supported by Knut and Alice Wallenberg Foundation and Swedish Research Council FORMAS. AMA was supported by AstraZeneca

    Structured aqueous processed lignin-based NMC cathodes for energy-dense LIBs with improved rate capability

    Get PDF
    The cost and environmental impact of lithium-ion batteries (LIBs) can be reduced substantially by enabling the aqueous processing of cathode materials. For the first time, we fabricate high-density, thick NMC111 cathode coatings using water as a solvent, and bio-derived kraft lignin as a binder material. The performance deterioration at high discharge currents is amplified by high mass loading and low bulk porosity. At porosities higher than 60%, the electronic conductivity limits the rate capability of the cathode, while for porosities lower than 30%, ionic conduction causes significant ionic polarization and consequently diminishes rate performance. The underlying lithium-ion diffusion limitation at current densities higher than 0.2 C is mitigated by creating line structures on the surface of the cathode. Structuring the half-dried cathode surface with ceramic blades is preferred over a stamp-like silicon wafer, and the line structures are easier to produce with high mechanical stability in comparison to pit structures. The lignin/water cells investigated herein restore after undergoing rate capability tests (5C), except those with pit structures or ultra-high thickness (>200 μm), due to the extensive crack formation during water evaporation which causes poor mechanical stability. Mechanical and laser structuring methods are compared on the surface of a PVDF/NMP-based cathode. Concerning the implementation in a large-scale battery factory, mechanical structuring is currently considered a processing of choice as it has no surface residuals or waste material. However, laser structuring with ultra-short pulses technique has the potential of outperforming mechanical structuring if the process is optimized to high precision to reduce residual and waste material, due to reproducibility and lower operational costs

    Cardiopulmonary bypass via common carotid artery cannulation in redo sternotomy

    Get PDF
    There are certain situations in redo cardiac surgery in adults where it may not be possible to use alternate arterial cannulation sites like the common femoral artery and axillary artery. We report a case where we established safe cardiopulmonary bypass with common carotid artery cannulation in an adult patient. The patient underwent aortic valve replacement for severe aortic regurgitation 8 months after repair of type A aortic dissection plus aortic valve resuspension

    Divergent mathematical treatments in utility theory

    Get PDF
    In this paper I study how divergent mathematical treatments affect mathematical modelling, with a special focus on utility theory. In particular I examine recent work on the ranking of information states and the discounting of future utilities, in order to show how, by replacing the standard analytical treatment of the models involved with one based on the framework of Nonstandard Analysis, diametrically opposite results are obtained. In both cases, the choice between the standard and nonstandard treatment amounts to a selection of set-theoretical parameters that cannot be made on purely empirical grounds. The analysis of this phenomenon gives rise to a simple logical account of the relativity of impossibility theorems in economic theory, which concludes the paper

    Information-Derived Mechanistic Hypotheses for Structural Cardiotoxicity

    Get PDF
    Adverse events resulting from drug therapy can be a cause of drug withdrawal, reduced and or restricted clinical use, as well as a major economic burden for society. To increase the safety of new drugs, there is a need to better understand the mechanisms causing the adverse events. One way to derive new mechanistic hypotheses is by linking data on drug adverse events with the drugs’ biological targets. In this study, we have used data mining techniques and mutual information statistical approaches to find associations between reported adverse events collected from the FDA Adverse Event Reporting System and assay outcomes from ToxCast, with the aim to generate mechanistic hypotheses related to structural cardiotoxicity (morphological damage to cardiomyocytes and/or loss of viability). Our workflow identified 22 adverse event-assay outcome associations. From these associations, 10 implicated targets could be substantiated with evidence from previous studies reported in the literature. For two of the identified targets, we also describe a more detailed mechanism, forming putative adverse outcome pathways associated with structural cardiotoxicity. Our study also highlights the difficulties deriving these type of associations from the very limited amount of data available

    Development of a life expectancy table for individuals with type 1 diabetes

    Get PDF
    Aims/hypothesis:Tables reporting life expectancies by common risk factors are available for individuals with type 2 diabetes; however, there is currently no published equivalent for individuals with type 1 diabetes. We aimed to develop a life expectancy table using a recently published simulation model for individuals with type 1 diabetes.Methods: The simulation model was developed using data from a real-world population of patients with type 1 diabetes selected from the Swedish National Diabetes Register. The following six important risk factors were included in the life table: sex; age; current smoking status; BMI; eGFR; and HbA1c. For each of 1024 cells in the life expectancy table, a synthetic cohort containing 1000 individuals was created, with other risk factors assigned values representative of the real-world population. The simulations were executed for all synthetic cohorts and life expectancy for each cell was calculated as mean survival time of the individuals in the respective cohort.Results: There was a substantial variation in life expectancy across patients with different risk factor levels. Life expectancy of 20-year-old men varied from 29.3 years to 50.6 years, constituting a gap of 21.3 years between those with worst and best risk factor levels. In 20-year-old women, this gap was 18.9 years (life expectancy range 35.0-53.9 years). The variation in life expectancy was a function of the combination of risk factor values, with HbA1c and eGFR consistently showing a negative and positive correlation, respectively, with life expectancy at any level combination of other risk factors. Individuals with the lowest level (20 kg/m2) and highest level of BMI (35 kg/m2) had a lower life expectancy compared with those with a BMI of 25 kg/m2. Non-smokers and women had a higher life expectancy than smokers and men, respectively, with the difference in life expectancy ranging from 0.4 years to 2.7 years between non-smokers and smokers, and from 1.9 years to 5.9 years between women and men, depending on levels of other risk factors.Conclusions/interpretation: The life expectancy table generated in this study shows a substantial variation in life expectancy across individuals with different modifiable risk factors. The table allows for rapid communications of risk in an easily understood format between healthcare professionals, health economists, researchers, policy makers and patients. Particularly, it supports clinicians in their discussion with patients about the benefits of improving risk factors

    Unexpected Consequences: Women’s experiences of a self-hypnosis intervention to help with pain relief during labour.

    Get PDF
    Background Self-hypnosis is becoming increasingly popular as a means of labour pain management. Previous studies have produced mixed results. There are very few data on women’s views and experiences of using hypnosis in this context. As part of a randomized controlled trial of self-hypnosis for intra-partum pain relief (the SHIP Trial) we conducted qualitative interviews with women randomized to the intervention arm to explore their views and experiences of using self-hypnosis during labour and birth. Methods Participants were randomly selected from the intervention arm of the study, which consisted of two antenatal self-hypnosis training sessions and a supporting CD that women were encouraged to listen to daily from 32 weeks gestation until the birth of their baby. Those who consented were interviewed in their own homes 8-12 weeks after birth. Following transcription, the interviews were analysed iteratively and emerging concepts were discussed amongst the authors to generate organizing themes. These were then used to develop a principal organizing metaphor or global theme, in a process known as thematic networks analysis. Results Of the 343 women in the intervention group, 48 were invited to interview, and 16 were interviewed over a 12 month period from February 2012 to January 2013. Coding of the data and subsequent analysis revealed a global theme of ‘unexpected consequences’, supported by 5 organising themes, ‘calmness in a climate of fear’, ‘from sceptic to believer’, ‘finding my space’, ‘delays and disappointments’ and ‘personal preferences’. Most respondents reported positive experiences of self-hypnosis and highlighted feelings of calmness, confidence and empowerment. They found the intervention to be beneficial and used a range of novel strategies to personalize their self-hypnosis practice. Occasionally women reported feeling frustrated or disappointed when their relaxed state was misinterpreted by midwives on admission or when their labour and birth experiences did not match their expectations. Conclusion The women in this study generally appreciated antenatal self-hypnosis training and found it to be beneficial during labour and birth. The state of focused relaxation experienced by women using the technique needs to be recognized by providers if the intervention is to be implemented into the maternity service
    • …
    corecore