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Abstract In this paper I study how divergent mathematical treatments affect

mathematical modelling, with a special focus on utility theory. In particular I

examine recent work on the ranking of information states and the discounting of

future utilities, in order to show how, by replacing the standard analytical treatment

of the models involved with one based on the framework of Nonstandard Analysis,

diametrically opposite results are obtained. In both cases, the choice between the

standard and nonstandard treatment amounts to a selection of set-theoretical

parameters that cannot be made on purely empirical grounds. The analysis of this

phenomenon gives rise to a simple logical account of the relativity of impossibility

theorems in economic theory, which concludes the paper.

1 Model Theory and Scientific Models

In a 1960 paper, Patrick Suppes claimed that:

[...] in the exact statement of the theory or in the exact analysis of data the

notion of model in the sense of logicians provides the appropriate intellectual

tool for making the analysis both precise and clear. (Suppes 1960: 295)

This claim was defended against the background thesis that the meaning of the

concept of model is the same in mathematics and the empirical sciences (Suppes

1960: 289). Suppes’ view of models is too restrictive in two distinct ways: one of

these has become clear through the recent literature on modelling, whereas the other

has been neglected and provides the main motivation for the discussion presented in
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this paper. The first sense in which Suppes’ view is too restrictive is that it wishes to

assimilate models tout court to mathematical models. Later developments in

philosophy of science have moved away from this perspective, while acknowledg-

ing the significance of Suppes’ proposal. For instance, the several contributions

included in Morgan and Morrison (1999), a turning point in the philosophy of

scientific modelling, work with a notion of model that is much more wide-ranging

than the one proposed by Suppes. This is perhaps most clearly stated in Adrienne

van den Bogaard’s contribution to the collection, when she writes:

Arguments about the model as a theory, or a method, or a distortion of reality,

all focus on the model as a scientific object and how it functions in science.

Without denying this dimension of the model at all, this paper wants to

broaden the perspective by claiming that the model is also a social and

political device. The model will be understood as a practice connecting data,

index numbers, national accounts, equations, institutes, trained personnel,

laws, and policy-making. (van den Bogaard 1999: 283)

It is clear that, if one is ready to accept the qualification of models for methods,

distortions of reality and social devices, Suppes’ more stringent semantic

qualification must appear to impose very narrow, perhaps unrealistic, constraints

on the study of modelling practices. It does not follow that Suppes’ appeal to

notions and techniques from mathematical logic should be deemed irrelevant to the

study of modelling practices in general. In this paper, I seek to defend the opposite

point of view by applying a model-theoretic approach to the study of mathematical

modelling within utility theory. While doing so, I depart from Suppes’ original

aims, which presuppose, in my opinion, too strict a delimitation of the ways in

which model-theoretic considerations may support philosophical investigations of

scientific models. The quotation opening this section spells out the delimitation in

question by restricting the mobilisation of set-theoretical semantics to the purposes

of formulating scientific theories (typically as classes of models defined by a set-

theoretical predicate, an approach whose abstract development has been presented

in Da Costa and Chuaqui 1988) or carrying out an exact analysis of data (e.g. by the

embedding of a data structure into a representing structure, a strategy adopted in Da

Costa and French 2003). These investigations are of clear philosophical interest, but

they rely more on the set-theoretical representation of structures and mappings

between them than on distinctively model-theoretical constructions and techniques.

It is therefore plausible to think that the tasks set by Suppes for a model-theoretic

investigation of the mathematical models used in empirical science cannot be

exhaustive. Such an impression is confirmed by a few notable applications of model

theory to the theory of measurement, which have been largely neglected by the

philosophical literature despite their importance: two of them are P.J. Cameron’s

classification of rational-valued scale types, obtained in Cameron (1989), and the

construction of measurement values as model-theoretic types presented in Niederée

(1992). Informally speaking, Cameron’s result shows that, if one thinks of empirical

variables as dense orderings that are not continua (isomorphic to the ordered reals),

the number of distinct scales they can theoretically give rise to increases from three
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(for continua) to infinity.1 Niederée’s results have shown, among other things, how

one can identify measuring numbers with sets of experimental data, as well as the

equivalence between certain mathematical assumptions (e.g. the Archimedean

property) and properties of experimental procedures. These results shed light on

important features of scientific models (especially measurement models) by model-

theoretic means, without pursuing any of the tasks recommended by Suppes, i.e.,

theory formulation or data analysis. The main objective of this paper is to extend

along a further direction the same model-theoretic style of investigation, which

recognises the value of Suppes’ original proposal but transcends its limited scope.

The model-theoretic machinery I shall rely upon comes from Nonstandard Analysis:

it is briefly surveyed in Sect. 2 (more details are found in the ‘‘Appendix’’). I shall

apply Nonstandard Analysis to two models from utility theory in order to construct

an alternative mathematical treatment for the economic setups they are supposed to

describe. This will allow me to show that the fragments of economic theory based

on these models are crucially sensitive to a choice of mathematical treatment, more

precisely, a selection of set-theoretic parameters. What this suggests is that

economic theory is, at an abstract level, significantly sensitive to the choice of

mathematical resources employed in its articulation. The existence of distinct

choices leads to bifurcations in the kind of result one may hope to obtain. In

particular, if one wishes to uphold certain normative constraints or introduce certain

formal approaches, it is sometimes mandatory to drop traditional mathematical

environments based on the real numbers. These remarks will be illustrated in full

detail in Sects. 4–7, after a brief semi-technical preliminary.

2 Classical and Nonstandard Analysis

A vast amount of work in mathematical social science (especially economics) relies

on the availability of the objects of classical analysis in the semantic metatheory.

For example, in consumer theory utilities are real numbers, bundles of goods are

real-valued vectors and their totality is canonically a subset of some Euclidean

space. In many interesting cases there is no particular empirical motivation to select

certain specific analytical objects in model-building, either because they (e.g. the

metric structure on a set of alternatives ranked by a preference relation) support

abstract models without having any empirical interpretation or because, even when

they represent some non-mathematical content, they enter a model also as carriers of

properties that have no particular connection with this content (e.g. the topological

separability of the real numbers representing utilities) and yet influence what can be

established about the given model. Because of this, it is of interest to consider what

happens if one replaces certain canonically employed analytical objects with

alternative objects. In this paper, I consider the objects of Nonstandard Analysis,2

1 Here scales are distinguished on the basis of the number of reference points, e.g. origins or units, that

uniquely determine them.
2 As is well-known, Nonstandard Analysis was created by Robinson (1966). The most widely adopted

approaches in this field are the superstructure approach (see e.g. Davis 1977) and the axiomatic approach

based on Nelson’s Internal Set Theory (Nelson 1986; Robert 1988, but see also, as a result of many
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which share a number of properties with classical objects but are, at the same time,

significantly different. I shall focus on their application to two mathematical models

from utility theory. In each case, I study the consequences of using certain

extensions of classical numerical sets within a Nonstandard universe as codomains

of functions that are canonically selected to be real-valued. While a standard

mathematisation based on real-valued functions gives rise to negative results, a

Nonstandard mathematisation replaces them by positive results (which may hold

under stronger conditions than were sufficient to deduce the negative results by

standard means). This divergence highlights the essential relativity (i.e., with

respect to a selection of mathematical resources) of negative results in economic

theory, since the remarks that hold for the utility models discussed in detail admit of

a general reformulation. Such a reformulation will be presented in Sect. 7, after a

full discussion of the main examples has taken place, in Sects. 4–6. It is appropriate

to note at this point, by way of a concluding remark, that applications of

Nonstandard Analysis are not new to the field mathematical economics (see for

instance, Skala 1975; Fishburn and Lavalle 1991; Lehmann 2001). However, all

those of which I am aware adopt a local point of view, i.e., they construct an

ultraproduct of some real structure suitable to specific modelling purposes.

Moreover, they are not concerned with showing how canonical and nonstandard

resources affect in divergent ways the results of modelling. My approach, on the

contrary, is global in the sense that it relies on a Nonstandard universe in which

several results involving nonstandard models are simultaneously obtained (this

point will be clarified in Sect. 3). Moreover, it is primarily concerned with showing

how canonical and nonstandard resources affect the results of modelling.

3 A Formal Preliminary

The Nonstandard universe I shall make use of in the next sections can be

constructed from a collection S0 of Urelemente (informally speaking, non-sets) that

contains a copy of the set of real numbers R. One can use S0 to generate a hierarchy

of set-theoretical objects by means of the following inductive condition:

Snþ1 ¼ Sn [ PðSnÞ;

where PðSnÞ is the powerset of Sn. The union U of all the Si (with i a natural

number) is a very rich object. It clearly contains the real numbers and all of their

subsets, but it also contains the Cartesian product Rn, for any natural number n, and,

as a consequence, every finitary relation on the real numbers, all functions of one or

several real variables and so on. The object U can then be described by means of a

first-order language with identity L which contains, apart from connectives and

quantifiers, the symbol 2 for set-theoretical membership and a name for every entity

Footnote 2 continued

refinements, Hrbacek et al. 2014). Here I make use of a version of the superstructure approach, which is

outlined in the ‘‘Appendix’’ and proceeds along the lines of Bell and Machover (1978).
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in U (including all relations, functions, sets of relations or functions etc.).3 Thus, in

particular, there are L-names for N, the set of natural numbers, or S, the set of all

sequences of real numbers, both of which will be considered later. One may then use

the compactness theorem of first-order logic to obtain an enlargement U0 of the

structure U ¼ hU;2i (how this can be done is outlined in the ‘‘Appendix’’). What

matters for present purposes is that an arbitrary enlargement will contain extended

numerical sets �N and �R that are richer than their respective counterparts N;R, in

the sense that the latter numerical sets can be embedded in their starred extensions

and these include additional elements. The only additional numerical elements that

will be extensively relied upon in what follows are the infinitely large numbers in
�N, i.e., the elements in this set that are greater than any n 2 N (where ‘greater

than’ is a binary relation on �N that agrees with the usual ordering on the standard

numbers). The language L introduced above will also play an important role, since it

allows one to state sentences that may contain names for N or R as parameters: if

these sentences are true in the standard universe U, then they are true in its

enlargement, with respect to �N and �R. In Sect. 6, this will make it possible to

‘extend’ properties of arbitrary, standard numbers to infinitely large numbers in

particular. This preliminary is sufficient to introduce the models alluded to in the

previous section.

4 Ranking Information States

My first example is taken from choice theory. A typical aim in this setting is to show

that the choice-behaviour of an agent can be represented by a utility function.

Formally, one introduces a space A of alternatives over which the agent is supposed

to express or reveal her preferences by way of binary comparisons. Thus, a

preference is understood to be a binary relation P on A, in particular a complete

preorder, i.e., a relation that is transitive and complete. The aim is then to show the

existence of a function u:A ! R, from A into the set of real numbers R such that,

for any x; y 2 A:

xPy iff uðxÞ� uðyÞ:

It is not unusual to encounter in the literature models where P is defined on an

uncountably large set. A fairly recent collection of models based on this setting, the

simplest of which I am going to discuss, is found in Dubra and Echenique (2001).

Given the specific purpose of this paper, I shall accept a few otherwise problematic

assumptions characteristic of these models. Such assumptions notably include the

postulation that choice outcomes give rise to a complete preorder (so that, in par-

ticular, any two distinct alternatives can be ranked and indifference is transitive) and

the presupposition that uncountably large spaces of alternatives provide an

acceptable idealised framework. Questionable as these assumptions may be, my

3 It proves convenient to have in the language also a two-place h; i term-forming operator that designates

ordered pairs. This term does not need to be assumed, since it could be introduced using the language L. I

have assumed its availability in Sect. 6.
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main aim is to retain them in order to show that, once they have been deployed, the

highly idealised character of the resulting models makes them amenable to distinct

mathematical treatments that, in turn, give rise to vastly different results. In brief,

substantive appeals to mathematical idealisation give rise to divergent modelling

trajectories. Although I shall focus on the most basic model studied by Dubra end

Echenique, it is worth noting that my remarks about it also apply, essentially

unchanged, to more sophisticated variants presented in the same paper. The model

in question involves an uncountably large set X of possible ‘states of nature’

endowed with the family of its partitions. Each partition divides the whole X into

disjoint subsets and a partition P is finer than a partition Q if every element of P is

included in some element of Q (if strictly included, then P is strictly finer than Q).

This formal model is meant to describe in mathematical terms the informational

states of a decision-maker: one interprets an arbitrary partition of X as resulting

from an equivalence relation of informational indifference. For an agent in pos-

session of Q, any two possible states of nature within an element of Q carry the same

amount of information and are therefore indistinguishable from this point of view. It

is also assumed that any decision-maker would find the transition from Q to a strict

refinement P desirable, since it leads from a less informative to a more informative

state. With this description of the model in place, taking PðXÞ to be the set of all

partitions of X, Dubra and Echenique consider the complete preorders on PðXÞ that

rank any partition strictly below any strict refinement (a condition they call

monotonicity). According to them, any rational decision-maker must rank PðXÞ on

one such preorder. It can however be shown that none of them is representable by a

real-valued utility function. Dubra and Echenique draw the following conclusion:

Our result is important because it shows that utility theory is not likely to be a

useful tool in the analysis of the value of information. This finding should be

contrasted with the existing literature on the value of information, where

utility representations are used. The use of a utility implies that preferences are

not monotone (Dubra and Echenique 2001: 1).

The point of the above quotation is that the existence of a utility representation is

incompatible with the assumption that an agent should prefer more information to

less. This remark is certainly correct, but it hides the following dilemma: is the

problem inherent in utility theory as a formal approach to the study of idealised

rankings or is it an effect of restricting attention to real-valued utility functions and,

thus, of certain properties of R? This dilemma refines the formulation of the

problem highlighted by Dubra and Echenique because it does not presuppose that

the codomain of a utility function should be R. No particular feature of the space of

informational states suggests that such a codomain should be selected. It is therefore

meaningful to look for alternative numerical codomains, on which utility functions

may exist. In other words, it is reasonable to conjecture that a lack of fit exists not

between utility functions and spaces of information states, but between these spaces

and the ordered reals. An application of Nonstandard Analysis shows that bounded

utility functions on �N exhibit a much better fit:
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Theorem 4.1 Every complete preorder has an uncountable family of bounded

utility functions on �N.

The proof that a bounded utility function on �N exists is included in the

‘‘Appendix’’. Since any strictly increasing, monotonic transformation of a utility

function is a utility function, multiplying the values of one by the infinitely large

number H 2 �N yields a utility functions. Since there are uncountably many such

numbers (see ‘‘Appendix’’), there are uncountably many utility functions.4 In the

light of Theorem 4.1, the suggestion that utility theory is not likely to be a useful

tool in the analysis of the value of information may be successfully resisted. The

applicability of utility theory as a uniform approach to the representation of

idealised preferences can be rescued, provided that one does not restrict attention to

real-valued utilities, which may be incompatible with the structure of certain

preorders. Note that, since �N is compatible with all of them, it is a numerical set

and shares with N every formal property statable in L, a language powerful enough

to express the whole of classical mathematics, there does not seem to be any natural

objection to the transition from the codomain R to �N. The latter transition may also

be regarded as the shift from one mathematical treatment, in which a particular

selection of semantic resources has been made, to an alternative treatment, based on

an alternative selection. The striking fact is that, on the first treatment, a certain

problem (representing monotone rankings of information states) admits of no

solution, whereas, on the alternative treatment, it admits of uncountably many. At a

certain level of mathematical idealisation, the selection of semantic resources makes

a huge difference to the implications of a model. This phenomenon is also

responsible for the intimate connection between semantic resources and normative

assumptions that some models display, as will be seen in the next two sections.

5 Discounting the Future

A simple and interesting illustration of the effects of alternative mathematical

treatments on normative constraints, which belongs, as the example from Sect. 4, to

utility theory, is a particular aggregation problem that arises in decision-making

scenarios involving policy choices with repercussions on the distant future.

Decisions concerning e.g. radioactive waste disposal, natural resource depletion,

levels of pollution that have an impact on biodiversity fall under this category. Since

future generations are affected by these decisions, it is plausible to think of the

relevant alternatives as sequences of utility indices, each of which expresses the

overall welfare level of one generation or one time-period. This approach has been

pursued since at least Diamond (1965), who studied infinite utility streams over

4 The existence of a utility function on a suitable ultraproduct of the reals is proved in Skala (1975: 44)

and Narens (1985: 258–259). Theorem 4.1 shows that one does not in general need to consider the reals,

since a suitable extension of N suffices. Moreover, Narens and Skala are primarily interested in the

existence of at least one utility function, and do not emphasise that, in fact, a large family of them can be

obtained. It is worth pointing out that Theorem 4.1 goes through for A of arbitrary, infinite cardinality,

although any given cardinality will call for an enlargement that satisfies suitable saturation properties.
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certain (metrizable) topological spaces, and has received renewed attention over the

last decade. The best way to understand the mathematical setup at play here is to

consider the case of finite utility streams first. Suppose that numerical utility indices

are attached to successive periods of time, e.g. generations, and only a finite number

of future periods is taken into account. Then the alternatives over which a choice is

to be made may be described by finite, ordered sequences of real numbers, i.e., finite

utility streams. Thus, for n periods, a utility stream is a vector s ¼ hsð1Þ; . . .; sðnÞi,
with sðiÞ; i ¼ 1; . . .; n a natural number. In order to compare distinct utility streams,

one may think of assigning to each one of them a numerical index: then a stream

will be preferred to another when its aggregate index is not smaller than the index

assigned to the other stream. An easy, conventional way of aggregating a stream s

consists in defining its aggregate index to be the sum of its components. When this

is done, the totality of finite n-ary streams is mapped into the ordered natural

numbers. The mapping u thus obtained allows a direct comparison between streams

which satisfies two intuitively desirable properties. In order to state them, it is

convenient to define two binary relations between streams, symbolised by � and p

respectively. The first relation holds when sðiÞ � tðiÞ for i ¼ 1; . . .; n, with strict

inequality for some i; the second does when t is obtained from s by a finite

permutation5 of its components. The two properties in question are:

• Pareto (P): s � t implies uðsÞ [ uðtÞ.
• Anonymity (A): p(s, t) implies uðsÞ ¼ uðtÞ.

Condition (P) says that the comparison of aggregated streams is sensitive to

improvements in a single time-period, whilst condition (A) says that the utility

indices of the present and of future time-periods are equally important. It is thus

trivial to establish Paretian and Anonymous aggregations for finite utility streams.

An interesting problem arises when one seeks to use utility streams to describe an

indefinitely remote future: perhaps the most obvious way of doing so is to deal with

infinite utility streams, i.e., infinite sequences of utility indices. Then, even if one

assumes that only finitely many distinct utility indices, but at least two of them, may

occur along a stream, the space of alternatives is uncountably large, exactly as in the

model from Sect. 4. This analogy may be brought further, since it can also be

proved for this uncountable object that no real-valued function defined on it and

satisfying (P) and (A) exists. Basu and Mitra (2003) proves this result for infinite,

binary streams. Crespo et al. (2009) derives the same theorem from (A) and a

condition strictly weaker than (P).6 In view of the previous section, one might

expect that such a negative result could be bypassed by a suitable choice of

alternative mathematical resources. I shall consider two alternative ways of

achieving this goal. The first is straightforward but may be regarded as

unsatisfactory, for reasons to be clarified in a moment.

5 Here permutations cannot but be finite. I emphasise finiteness because it will appear also in the

discussion of infinite utility streams to follow.
6 In the present notation, this condition states that s � t implies uðsÞ [ uðtÞ if strict inequality holds for

infinitely many components of s, t (see Crespo et al. 2009, p. 52).
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Lemma 5.1 Let S be the set of real-valued, infinite utility streams. There is an

aggregation u from S to an initial segment of �N that satisfies (P) and (A).

Proof Following Svensson (1980), define the binary relation P on S by the

following condition on any s; t 2 S:

sPt iff for some finite permutation p of N; pðsÞ� t

where the relation ‘� ’ is component-wise inequality. It can be verified that P is a

preorder that satisfies (P) and (A). By an application of the Axiom of Choice known

as Szpilrajn lemma, P can be extended to a complete preorder, which is repre-

sentable by some function u on an initial segment of �N by Theorem 4.1. The

representation u is also an aggregation on S that satisfies (P) and (A). h

A fortiori, Lemma 5.1 ensures the existence of an aggregation u when infinite

utility streams take values in N. Nevertheless, this result does not establish any

continuity between the finite and the infinite case: in particular, it does not decide

whether it is possible to aggregate utilities by summation in both cases. The latter

possibility may be viewed as a desirable requirement because homogeneity in

aggregation could be taken as evidence that infinite utility streams are a good

generalisation of finite utility streams. It turns out that, for utility streams that take

only finitely many values,—a plausible restriction—this type of homogeneity can be

established only if one gives up (A), in particular by discounting the future. Such a

move is not unfamiliar to economists, since e.g. it is often adopted to solve optimal

control problems over an infinite time horizon. In the present context a discounting

approach takes the following form:

Remark Let Sk be the set of all infinite utility streams generated by a finite set of

real numbers fr1; . . .; rkg. There are uncountably many discounted utility represen-

tations of S that satisfy (P).

Proof Set r ¼ maxfr1; . . .; rkg and fix an arbitrary, positive real a [ 1. The

constant sequence hr; r; r; . . .i bounds above every other sequence in Sk component-

wise. Now consider the discounting factor a�n (which equals a0 ¼ 1 on the first

component of a utility stream, a�1 on the second, and a�n on the nth. For any s 2 Sk

with nth component sn, consider the series:

uðsÞ ¼
X1

i¼0

sna
n:

This series is bounded above by the series obtained by setting sn ¼ r, for every n.

Since the latter series has a sum, namely rea, the former does. As a result u is a

discounted aggregation for Sk: because there are uncountably many choices for a,

there are uncountably many such aggregations. h

In the light of the last remarks alone, one may conjecture that the only way to

obtain a ‘natural’ aggregation (i.e., by summation) for utility streams is to impose a

discount rate on the future. If this conjecture were true, then, theoretically, there

would be no way of implementing an ethically desirable condition like (A) by way
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of an aggregation.7 It would look as though one were forced to drop (A) and adopt

the normatively problematic assumption that utility decays at a certain rate in time,

if one wished to compare alternatives by means of aggregations. This standpoint is,

however, not reasonable, since it would lead to theoretical scenarios in which e.g.

the faster-paced consumption of an exhaustible resource or a more intensive

exploitation of natural resources was deemed preferable to an alternative policy,

independently of its environmental effects. One might advocate such an ethically

unacceptable perspective only by suggesting that more utility is to be extracted from

a certain resource in the present or near future than it could be in the remote future.8

Abstractly speaking, such an argument has any force only insofar as one takes the

semantic components of the model that licenses it to be fixed. When this constraint

is abandoned, it becomes meaningful to search for a mathematical treatment that

satisfies (A) and rules out discounting future utilities. There is no particular reason

to take the set-theoretical parameters of the aggregation problem as fixed and then

test the satisfiability of (A) under these parameters. In fact, there are ethical reasons

to subordinate the choice of mathematical resources to the satisfiability of a

normative constraint like (A). In other words, one may wish to detect the

mathematical resources that conflict with (A) in order to replace them with others

that do not. In fact, discount-free aggregations that add utilities and satisfy both (P)

and (A) can be obtained if one chooses the codomain of the aggregation to be �R
instead of R (or �N instead of N). The applicability of Nonstandard Analysis to this

problem is adumbrated (but not fully articulated) in Lauwers (2010)9 and has been

briefly illustrated in Pivato (2014) but none of these authors has emphasised it as an

instance of the effects of alternative mathematical treatments. Furthermore, none of

them points out that one can easily obtain an uncountable family of aggregations

satisfying (A) and (P). This is proved in the next section.

6 Discount-Free Aggregations

Within the Nonstandard universe quickly described in Sect. 3 (see also the

‘‘Appendix’’), any real-valued, infinite utility stream s has a �R-valued extension �s:
since sðnÞ ¼ r is a true L-sentence about s, it follows that, for every

n 2 N; sðnÞ ¼ �sðnÞ. The difference between these two sequences is that �s also

has infinitely large arguments, at which it takes uniquely determined values. An

additive, discount-free representation of utility streams may be obtained by

truncating �s at an arbitrary, infinitely large argument. Since, intuitively, the

truncation of �s at any argument behaves like a finite subsequence, its values can be
�summed, in the sense that one applies to them a function which is the nonstandard

extension of a finite summation, also known as a �finite, or hyperfinite, summation.

7 On the other hand, it would be possible to determine an intrinsic ranking of S that satisfies (P) and (A).

This possibility is actually exploited in the proof of Lemma 5.1.
8 The locus classicus for a critique of discounting on ethical grounds is Ramsey (1928). A more recent

critique of discounting in the context of environmental economics may be found in Weitzman (1998).
9 Lauwers shows how one may directly order utility streams by means of an ultrafilter-based argument

which would determine the same aggregate ranking on a corresponding ultrapower of the reals.
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Taking such a summation preserves all information carried by s (since s and �s agree

at every finite argument) in a format that can be handled much like an ordinary,

finite summation. This allows a straightforward generalisation of the treatment of

finite utility streams described in Sect. 4. In particular both (P) and (A) are satisfied

by �finite summations because of the following two lemmas (S below is the set of

real-valued, infinite utility streams):

Lemma 6.1 If s; t 2 S and H is an infinitely large number, then:

pðs; tÞ implies
XH

i¼0

�sðiÞ ¼
XH

i¼0

�tðiÞ:

Lemma 6.2 If s; t 2 S and H is an infinitely large number, then:

s � t implies
XH

i¼0

�sðiÞ[
XH

i¼0

�tðiÞ:

Lemmas 6.1 and 6.2 in turn imply:

Theorem 6.3 Let S be the set of all infinite, real-valued utility streams. There is

an uncountable family of �R-valued aggregations for S satisfying both (P) and

(A).10

The last theorem shows that normative constraints may be deeply connected to a

choice of mathematical resources. Under a canonical choice (real-valued aggrega-

tions) there is no way of meeting constraint (A). An alternative choice gives rise to

uncountably many ways of meeting it. The latter choice is not only preferable on

ethical grounds, i.e., because it gives rise to a theoretical model that does not

presuppose the viability of unacceptable policies, but may even be supported on

technical grounds. This is clarified by two representative quotations from

economists working on the problem of intertemporal choice and finding it

problematic to work with the reals. The first quotation comes from Koopmans:

[...] there is not enough room in the set of real numbers to accommodate and

label numerically all the different satisfaction levels that may occur in relation

to consumption programs for an infinite future (Koopmans 1960: 288)

The very same issue is raised by Basu and Mitra when they point out that:

10 In fact, these aggregations do not only satisfy (P) and (A) but also a further interesting condition that

does not follow from them. This is called ‘Hammond equity for the future’ (H) and has been introduced in

Asheim and Tungodden (2005): formally, it states that, if sðiÞ [ tðiÞ for i � 2 and sð1Þ\ tð1Þ, then

uðsÞ [ uðtÞ. The intuitive motivation for (H) is the idea that a relative loss in the present is acceptable if

it is to be followed by a relative gain for all future generations. The plausibility of this condition depends,

among other things, on the rather optimistic assumption that correct estimations of future utility levels can

be made for an arbitrary distant future.
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The proof of our result, roughly speaking, involves showing that in trying to

represent any social welfare function respecting equity and the Pareto

principle [these are (A) and (P) above], one ‘‘runs out of real numbers’’. (Basu

and Mitra 2003: 1558)

These quotations seem to reveal a recognition of the fact that there is an inherent

problem with reconciling the structure of the real numbers with that of certain

formal preferences. This may be read as a statement against the use of real numbers

under these circumstances. The fact that one ‘runs out of real numbers’ is not to be

seen as an obstacle to tackling an aggregation problem, but rather as a call for

methods that can tackle them.

7 Impossibility as Unsatisfiability

The results from Dubra and Echenique (2001), Basu and Mitra (2003) and Crespo

et al. (2009), which have been discussed above, are instances of what are often

referred to in the economic literature as impossibility theorems. Roughly speaking,

an impossibility theorem states that certain conditions cannot be simultaneously

met. As the previous sections have shown, it would be incorrect to take them to

assert the absolute inconsistency of a set of conditions. This is because such

inconsistency holds only when certain parameters occurring within the relevant

statements have been fixed, but may disappear under an alternative selection of

parameters. In order to clarify this remark, it is helpful to articulate it with the aid of

some elementary logical notions. Virtually every impossibility theorem obtained in

the economic literature relies on a piece of classical mathematics and, as such, it

determines a L-formula with one free variable that is unsatisfiable in U. Thus,

impossibility is better qualified as unsatisfiability and an impossibility theorem is

better characterised as a metatheoretical statement to the effect that a certain

formula is false in U under every assignment of a set-theoretical entity to its free

variable. To see this more explicitly, consider the impossibility result obtained in

Basu and Mitra (2003) and note that L has a name for the set S of all real-valued

utility streams and can express the binary relations and � and p respectively. With

an abuse of notation (using e.g. S also as a name in the language for the set S), one

can write the following (abbreviated) L-formula:

x2PðS�RÞ ^ ð8u2SÞð9v2RÞðhu;vi 2 xÞ ^ ð8u2SÞð8v2RÞð8z2RÞððhu;vi 2
x^ hu; zi 2 xÞ! v¼ zÞ ^ ð8u2SÞð8v2SÞð8r 2RÞð8s2RÞððu� v^ hu; ri 2
x^ hv; si 2 xÞ! r[ sÞ ^ ð8u2SÞð8v2SÞð8r 2RÞð8s2RÞððpðu;vÞ ^ hu; ri 2
x^ hv; si 2 xÞ! r¼ sÞ:

Call the last formula hðxÞ: if hðxÞ were satisfiable, then there would be a total,

single-valued correspondence from S to R (a utility function) satisfying (P) and (A)

(this is what the formula says). What Basu and Mitra proved can be reduced to the

statement that hðxÞ is unsatisfiable in U. It does not follow that the same formula

cannot be satisfied elsewhere. If one interprets the symbols R and PðS�RÞ
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occurring in hðxÞ respectively on the entities �R and P�ðS�RÞ (i.e., the powerset

of the entity �ðS�RÞ), then Theorem 6.3 shows that hðxÞ is satisfiable in the

Nonstandard universe �UhðxÞ. Alternatively, one might have used a variant of in

which the parameters R;S�R had been replaced by suitable nonstandard param-

eters (attached to an interpretation on the Nonstandard universe). In this case, a

change in mathematical treatment would have been highlighted by a change of

parameters, which is attached to a change of semantic resources, given the inter-

pretation of the parameters. The availability of distinct mathematical treatments

amounts, in this simple scenario, to the possibility of selecting parameters attached

to distinct semantic environments. When one deals with highly idealised models, as

is frequently the case in mathematical economics, no particular selection is forced

by the empirical elements of the model. As a result, the option of removing an

impossibility theorem by a suitable choice of mathematical treatment is in general

open. This means that impossibility theorems should be regarded as statements of

relative impossibilities constrained by a selection of mathematical parameters.

Relative impossibilities can thus be removed without changing the linguistic for-

mulation of the conditions that imply them under a specific choice of parameters.

The example of hðxÞ just discussed offers an illustration of this point and suggests a

novel strategy to deal with relative impossibilities. Whereas, traditionally, negative

results are circumvented by replacing some of their assumptions by weaker ones

that no longer imply them, the previous analysis shows that the same, or even

stronger assumptions may be retained, provided that a suitable change of parameters

is effected. Recall, for instance, that, in the case of infinite utility streams, Theo-

rem 6.3 removes the impossibility result proved in Crespo et al. (2009) under

stronger conditions, namely (P) and (A), than those assumed in that paper (see

footnote 6). The same theorem also removes the impossibility result proved in Basu

and Mitra (2003) under the strictly stronger set of conditions (P), (A) and (H) (see

footnote 10). These remarks are entirely general, since one may write a formula hðxÞ
with one free-variable for any known impossibility theorem. To replace hðxÞ with a

different formula h0ðxÞ for which no impossibility can be proved is to circumvent an

impossibility. To retain hðxÞ and change the interpretation of its parameters is, on

the other hand, to remove it. Even though the latter strategy may be in principle

practicable, it is not guaranteed that it should always be fruitful. The examples

discussed in this paper show however that there are interesting cases in which its

fruitfulness is sufficiently evident.

8 Concluding Remarks

It is easy to think of mathematics as a system of resources whose main effect on

modelling is to constrain the setup to which they are applied, by deploying forms of

reasoning that conclusively establish results and exclude alternatives. This picture

captures one of the advantages of any mathematical treatment, namely control over

the object of investigation, but neglects another, distinct, character of mathematical

modelling, namely its open-endedness. As the examples discussed in the previous
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sections have shown, mathematical resources offer the means to construct

alternative treatments, which may give rise to different modelling trajectories.

Mathematics is thus not only to be seen an instrument that stringently fixes

outcomes by way of proofs, but also as the matrix of a plurality of formal strategies.

As the previous sections have shown, the latter characteristic of mathematics has a

non-negligible impact on modelling practices, in view of its close connection with

the viability of certain formal approaches or the satisfiability of certain normative

constraints.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0

International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, dis-

tribution, and reproduction in any medium, provided you give appropriate credit to the original

author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were

made.

Appendix

Construction of a Nonstandard Universe

In order to construct U0, consider the family C of all sets of U-concurrent L-formulae:

these are sets of formulae with one free variable that are finitely satisfiable in U. For

instance, consider the countable set of all formulae of the form x 2 N ^ x 6¼ n, with n a

constant denoting a natural number: since there are infinitely many natural numbers,

each finite subset of this set is satisfiable for some assignment of a sufficiently large

natural number to the variable x. It can be proved using the compactness theorem (see

Bell and Machover 1978: 534) that, turning C into a family of sets of sentences by

means of new constant symbols,11 the resulting family C0 determines a model U0 ofS
C0, such that U is an elementary substructure of U0. This is to say that there is an

elementary embedding �:U ! U0, which in particular sends each Si (defined in Sect. 3

above) into �Si. The union
S

i2N
�Si is the nonstandard universe �U, whose entities are

called internal entities. Note that the nonstandard universe is a sufficiently rich object:

for instance, since both N and R are elements of S1, it follows that �N and �N are

internal entities in �U. By the same clue, since every set of ordered pairs of reals is an

element of S3, the relation �\, as well as any function of one real-variable, has its

counterpart in �S3. It is convenient to introduce a language �L that has the same

resources as L but, instead of names for the entities in U, has names for the internal

entities in �U. The �-transform of a L-sentence is obtained by replacing its constants

with the corresponding starred symbols. SinceU is an elementary substructure ofU0, it

follows that an L-sentence is true in U iff its �-transform is true in U0. The crucial

feature of U0 that makes it an interesting superstructure of U and will be exploited

below is that every set of L-sentences concurrent inU determines a set of �L-sentences

that are simultaneously satisfied by some entity in the domain of U0 (which we are

usually able to locate as an internal entity in �U). For instance, consider again the set of

L-sentences of the form x 2 N ^ x 6¼ n: the corresponding set of �L-sentences is the

11 Each set of U-concurrent formulae is turned into a set of sentences by replacing the free variable in

each of these formulae by the same, new (i.e., not in L) constant symbol.
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denumerable set whose elements have the form x 2 �N ^ x 6¼ �n. Since we may

identify �n and n, it follows that �N contains some number H that differs from every

natural number �n ¼ n. Note that H cannot be smaller than any �n, since every natural

number smaller than nmust be one of 0; 1; . . .; n� 1 (this can be stated as a L-sentence

true inU, which therefore has a (true) �-transform). Thus, since the natural numbers are

linearly ordered (again, a true L-sentence with a �-transform), H is an infinitely large

number. As a consequence, the initial segment 1; . . .;H of �N is an infinite set and it

can be proved that it is uncountable (see e.g. Goldblatt 1998: 197). In general, any

infinite set inU contains an enlargement with additional elements in �U: for numerical

sets, this form of enrichment implies the availability of additional numbers.

Proof of Theorem 4.1

Theorem 4.1 is a corollary of the following result:

Theorem 8.1 Let A � S be a nonempty set and P be a complete preorder on A.

Then there is a function uþ:A ! �N such that, for any x; y 2 A: x P y iff

uþðxÞ � uþðyÞ.

Proof Let PFðAÞ be the set of the finite subsets of A. Any s 2 PFðAÞ, being finite,

can be represented on N by some suitable function u. Now consider the binary

relation R between subsets of A and N-valued functions defined by the following

condition: sRu iff s 2 PFðAÞ and u is a N-valued function (e.g. an element of the

powerset PFðA�NÞÞ on s such that, for any x; y 2 s: x P y iff uðxÞ � uðyÞ. The

relation R is concurrent because, if siRui (i ¼ 1; . . .; n), then the union of the si is a

finite set with a N-valued representation, which can be restricted to yield a repre-

sentation for each of the si. The concurrence of R implies the existence of a �N-

valued, internal function uþ such that, for every s in the domain of R, �s�Ruþ. Now

consider any x; y 2 A: since �fx; yg belongs to the domain of �R, we have
�fx; yg�Ruþ and x P y iff uþðxÞ � uþðyÞ. h

Proof of Theorem 4.1 Since any finite subset of A has a representation on an initial

segment of N, one can adapt the proof of Theorem 4.1 to establish the existence of a

utility representation on an initial segment of �N. h

Proofs of the Results from Section 6

Proof of Lemma 6.1 Since p(s, t) holds, only finitely many elements of s need to

be reshuffled in order to obtain t. As a consequence, there is n 2 N for which the L-

sentence / below holds:

ð8x 2 NÞ x[ n !
Xn

i¼0

sðiÞ ¼
Xn

i¼0

sðiÞ
 !

:

The �-transform of /, call it �/, is true in �U. Since any infinitely large number H is

greater than the finite number n, an instantiation of the universal quantifier for H in
�/ yields the result. h
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Proof of Lemma 6.2 Substitute ‘[ ’ to ‘¼’ in the L-sentence from Lemma 6.1: the

same argument applies. h

Proof of Theorem 6.3 Fix an arbitrary, infinitely large number H. The function

u : S ! �R, defined by the following condition:

uðsÞ ¼
XH

i¼0

�sðiÞ

for any s 2 S, satisfies (P) and (A) by Lemmas 6.1 and 6.2. Since there are

uncountably many, infinitely large numbers in �N, there are uncountably many

ways of defining u. h
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