2,655 research outputs found
Exploring the attitudes to and uptake of biosecurity practices for invasive non-native species: views amongst stakeholder organisations working in UK natural environments
Invasions by invasive non-native species (INNS) can have profound consequences for natural environments, impacting on biodiversity and the biophysical landscape in ways that can endanger other species, human wellbeing and infrastructure. The financial costs of dealing with established INNS populations can be extremely high. Biosecurity measures (simple procedures designed to reduce the risk of human activities spreading INNS to new areas) are being promoted in order to minimize these negative impacts and associated costs. This paper reports on research undertaken with stakeholder organisations that operate within UK natural environments. It aims to evaluate stakeholder perceptions of their role in INNS biosecurity practice in the UK, and the implications of this for INNS strategy more broadly. Semi-structured interviews were undertaken with organisation representatives to explore current practices and communications about INNS and perceptions of barriers and opportunities to implement better biosecurity. Whilst participants generally agreed on the need for biosecurity, there were variations among participants in levels of knowledge about INNS (related to background) and the capacity of organisations to engage in biosecurity practices (related to organisational size). Critical barriers to biosecurity were identified as costs, lack of clear guidance, difficulties changing attitudes and implementing collective responsibility, and reactionary versus precautionary approaches. As a result, partnership working on INNS is difficult and action tends to focus on individual species perceived as the most threatening to a particular organisations’ interests. In this way, action on INNS biosecurity faces the kinds of barriers that are common to many environmental problems where individuals/organisations prioritise self-interest despite the potential to obtain greater benefits if collective action could be achieved
Automatic processing of multimodal tomography datasets
With the development of fourth-generation high-brightness synchrotrons on the horizon, the already large volume of data that will be collected on imaging and mapping beamlines is set to increase by orders of magnitude. As such, an easy and accessible way of dealing with such large datasets as quickly as possible is required in order to be able to address the core scientific problems during the experimental data collection. Savu is an accessible and flexible big data processing framework that is able to deal with both the variety and the volume of data of multimodal and multidimensional scientific datasets output such as those from chemical tomography experiments on the I18 microfocus scanning beamline at Diamond Light Source
Neurofascin antibodies in autoimmune, genetic, and idiopathic neuropathies
OBJECTIVE: To measure the frequency, persistence, isoform specificity, and clinical correlates of neurofascin antibodies in patients with peripheral neuropathies. METHODS: We studied cohorts of patients with Guillain-Barre syndrome (GBS) or chronic inflammatory demyelinating polyneuropathy (CIDP) (n = 59), genetic neuropathy (n = 111), and idiopathic neuropathy (n = 43) for immunoglobulin (Ig) G and IgM responses to 3 neurofascin (NF) isoforms (NF140, NF155, and NF186) using cell-based assays. RESULTS: Neurofascin antibodies were more common in patients with GBS/CIDP (14%, 8 of 59) compared to genetic neuropathy controls (3%, 3 of 111, p = 0.01). Seven percent (3 of 43) of patients with idiopathic neuropathy also had neurofascin antibodies. NF155 IgG4 antibodies were associated with CIDP refractory to IV immunoglobulin but responsive to rituximab, and some of these patients had an acute onset resembling GBS. NF186 IgG and IgM to either isoform were less specific. A severe form of CIDP, approaching a locked-in state, was seen in a patient with antibodies recognizing all 3 neurofascin isoforms. CONCLUSIONS: Neurofascin antibodies were 4 times more frequent in autoimmune neuropathy samples compared to genetic neuropathy controls. Persistent IgG4 responses to NF155 correlated with severe CIDP resistant to usual treatments but responsive to rituximab. IgG4 antibodies against the common domains shared by glial and axonal isoforms may portend a particularly severe but treatable neuropathy. The prognostic implications of neurofascin antibodies in a subset of idiopathic neuropathy patients and transient IgM responses in GBS require further investigation
Ybp1 and Gpx3 signaling in Candida albicans govern hydrogen peroxide-induced oxidation of the Cap1 transcription factor and macrophage escape
Peer reviewedPublisher PD
A novel pathway producing dimethylsulphide in bacteria is widespread in soil environments
The volatile compound dimethylsulphide (DMS) is important in climate regulation, the sulphur cycle and signalling to higher organisms. Microbial catabolism of the marine osmolyte dimethylsulphoniopropionate (DMSP) is thought to be the major biological process generating DMS. Here we report the discovery and characterisation of the first gene for DMSP-independent DMS production in any bacterium. This gene, mddA, encodes a methyltransferase that methylates methanethiol (MeSH) and generates DMS. MddA functions in many taxonomically diverse bacteria including sediment-dwelling pseudomonads, nitrogen-fixing bradyrhizobia and cyanobacteria, and mycobacteria, including the pathogen Mycobacterium tuberculosis. The mddA gene is present in metagenomes from varied environments, being particularly abundant in soil environments, where it is predicted to occur in up to 76% of bacteria. This novel pathway may significantly contribute to global DMS emissions, especially in terrestrial environments, and could represent a shift from the notion that DMSP is the only significant precursor of DMS
Primordial Black Holes: sirens of the early Universe
Primordial Black Holes (PBHs) are, typically light, black holes which can
form in the early Universe. There are a number of formation mechanisms,
including the collapse of large density perturbations, cosmic string loops and
bubble collisions. The number of PBHs formed is tightly constrained by the
consequences of their evaporation and their lensing and dynamical effects.
Therefore PBHs are a powerful probe of the physics of the early Universe, in
particular models of inflation. They are also a potential cold dark matter
candidate.Comment: 21 pages. To be published in "Quantum Aspects of Black Holes", ed. X.
Calmet (Springer, 2014
Evaluation of Phage Display Discovered Peptides as Ligands for Prostate-Specific Membrane Antigen (PSMA)
The aim of this study was to identify potential ligands of PSMA suitable for further development as novel PSMA-targeted peptides using phage display technology. The human PSMA protein was immobilized as a target followed by incubation with a 15-mer phage display random peptide library. After one round of prescreening and two rounds of screening, high-stringency screening at the third round of panning was performed to identify the highest affinity binders. Phages which had a specific binding activity to PSMA in human prostate cancer cells were isolated and the DNA corresponding to the 15-mers were sequenced to provide three consensus sequences: GDHSPFT, SHFSVGS and EVPRLSLLAVFL as well as other sequences that did not display consensus. Two of the peptide sequences deduced from DNA sequencing of binding phages, SHSFSVGSGDHSPFT and GRFLTGGTGRLLRIS were labeled with 5-carboxyfluorescein and shown to bind and co-internalize with PSMA on human prostate cancer cells by fluorescence microscopy. The high stringency requirements yielded peptides with affinities KD∼1 μM or greater which are suitable starting points for affinity maturation. While these values were less than anticipated, the high stringency did yield peptide sequences that apparently bound to different surfaces on PSMA. These peptide sequences could be the basis for further development of peptides for prostate cancer tumor imaging and therapy. © 2013 Shen et al
GLAST: Understanding the High Energy Gamma-Ray Sky
We discuss the ability of the GLAST Large Area Telescope (LAT) to identify,
resolve, and study the high energy gamma-ray sky. Compared to previous
instruments the telescope will have greatly improved sensitivity and ability to
localize gamma-ray point sources. The ability to resolve the location and
identity of EGRET unidentified sources is described. We summarize the current
knowledge of the high energy gamma-ray sky and discuss the astrophysics of
known and some prospective classes of gamma-ray emitters. In addition, we also
describe the potential of GLAST to resolve old puzzles and to discover new
classes of sources.Comment: To appear in Cosmic Gamma Ray Sources, Kluwer ASSL Series, Edited by
K.S. Cheng and G.E. Romer
Profiling allele-specific gene expression in brains from individuals with autism spectrum disorder reveals preferential minor allele usage.
One fundamental but understudied mechanism of gene regulation in disease is allele-specific expression (ASE), the preferential expression of one allele. We leveraged RNA-sequencing data from human brain to assess ASE in autism spectrum disorder (ASD). When ASE is observed in ASD, the allele with lower population frequency (minor allele) is preferentially more highly expressed than the major allele, opposite to the canonical pattern. Importantly, genes showing ASE in ASD are enriched in those downregulated in ASD postmortem brains and in genes harboring de novo mutations in ASD. Two regions, 14q32 and 15q11, containing all known orphan C/D box small nucleolar RNAs (snoRNAs), are particularly enriched in shifts to higher minor allele expression. We demonstrate that this allele shifting enhances snoRNA-targeted splicing changes in ASD-related target genes in idiopathic ASD and 15q11-q13 duplication syndrome. Together, these results implicate allelic imbalance and dysregulation of orphan C/D box snoRNAs in ASD pathogenesis
VHE -ray observations of Markarian 501
Markarian 501, a nearby (z=0.033) X-ray selected BL Lacertae object, is a well established source of Very High Energy (VHE, E>=300 GeV) gamma rays. Dramatic variability in its gamma-ray emission on time-scales from years to as short as two hours has been detected. Multiwavelength observations have also revealed evidence that the VHE gamma-ray and hard X-ray fluxes may be correlated. Here we present results of observations made with the Whipple Collaboration's 10 m Atmospheric Cerenkov Imaging Telescope during 1999 and discuss them in the context of observations made on Markarian 501 during the period from 1996-1998
- …
