1,229 research outputs found

    Maternal nutritional status, C1 metabolism and offspring DNA methylation: a review of current evidence in human subjects.

    Get PDF
    : Evidence is growing for the long-term effects of environmental factors during early-life on later disease susceptibility. It is believed that epigenetic mechanisms (changes in gene function not mediated by DNA sequence alteration), particularly DNA methylation, play a role in these processes. This paper reviews the current state of knowledge of the involvement of C1 metabolism and methyl donors and cofactors in maternal diet-induced DNA methylation changes in utero as an epigenetic mechanism. Methyl groups for DNA methylation are mostly derived from the diet and supplied through C1 metabolism by way of choline, betaine, methionine or folate, with involvement of riboflavin and vitamins B6 and B12 as cofactors. Mouse models have shown that epigenetic features, for example DNA methylation, can be altered by periconceptional nutritional interventions such as folate supplementation, thereby changing offspring phenotype. Evidence of early nutrient-induced epigenetic change in human subjects is scant, but it is known that during pregnancy C1 metabolism has to cope with high fetal demands for folate and choline needed for neural tube closure and normal development. Retrospective studies investigating the effect of famine or season during pregnancy indicate that variation in early environmental exposure in utero leads to differences in DNA methylation of offspring. This may affect gene expression in the offspring. Further research is needed to examine the real impact of maternal nutrient availability on DNA methylation in the developing fetus

    A randomized, controlled trial comparing ganciclovir to ganciclovir plus foscarnet (each at half dose) for preemptive therapy of cytomegalovirus infection in transplant recipients

    Get PDF
    Forty-eight patients who provided 2 consecutive blood samples that tested positive for cytomegalovirus DNA by polymerase chain reaction (PCR) were randomized to receive either full-dose ganciclovir ( 5 mg/kg intravenously [iv] twice daily) or half-dose ganciclovir (5 mg/kg iv once daily) plus half-dose foscarnet (90 mg/kg iv once daily) for 14 days. In the ganciclovir arm, 17 (71%) of 24 patients reached the primary end point of being CMV negative by PCR within 14 days of initiation of therapy, compared with 12 (50%) of 24 patients in the ganciclovir-plus-foscarnet arm (P = .12). Toxicity was greater in the combination-therapy arm. In patients who failed to reach the primary end point, baseline virus load was 0.77 log(10) higher, the replication rate before therapy was faster (1.5 vs. 2.7 days), and the viral decay rate was slower (2.9 vs. 1.1 days) after therapy. Bivariable logistic regression models identified baseline virus load, bone-marrow transplantation, and doubling time and half-life of decay as the major factors affecting response to therapy within 14 days. This study did not support a synergistic effect of ganciclovir plus foscarnet in vivo

    Epigenetic regulation of POMC; implications for nutritional programming, obesity and metabolic disease.

    Get PDF
    Proopiomelanocortin (POMC) is a key mediator of satiety. Epigenetic marks such as DNA methylation may modulate POMC expression and provide a biological link between early life exposures and later phenotype. Animal studies suggest epigenetic marks at POMC are influenced by maternal energy excess and restriction, prenatal stress and Triclosan exposure. Postnatal factors including energy excess, folate, vitamin A, conjugated linoleic acid and leptin may also affect POMC methylation. Recent human studies suggest POMC DNA methylation is influenced by maternal nutrition in early pregnancy and associated with childhood and adult obesity. Studies in children propose a link between POMC DNA methylation and elevated lipids and insulin, independent of body habitus. This review brings together evidence from animal and human studies and suggests that POMC is sensitive to nutritional programming and is associated with a wide range of weight-related and metabolic outcomes

    Early-life nutritional and environmental determinants of thymic size in infants born in rural Bangladesh

    Get PDF
    The aim was to assess the impact of nutritional status and environmental exposures on infant thymic development in the rural Matlab region of Bangladesh. In a cohort of N-max 2094 infants born during a randomized study of combined interventions to improve maternal and infant health, thymic volume (thymic index, TI) was assessed by ultrasonography at birth and at 8, 24 and 52 weeks of age. Data on birth weight, infant anthropometry and feeding status were also collected. At all ages, TI was positively associated with infant weight and strongly associated with the month of measurement. Longer duration of exclusive breastfeeding resulted in a larger TI at 52 weeks. TI at birth and at 8 weeks correlated positively with birth weight, but by 24 and 52 weeks and when adjusted for infant weight this effect was no longer present. Thymic size was not affected by pre-natal maternal supplementation or by socioeconomic status but was correlated to arsenic exposure during pregnancy. In this population of rural Bangladeshi infants, thymic development is influenced by both nutritional and environmental exposures early in life. The long-term functional implications of these findings warrant further investigation

    Anemia Offers Stronger Protection Than Sickle Cell Trait Against the Erythrocytic Stage of Falciparum Malaria and This Protection Is Reversed by Iron Supplementation.

    Get PDF
    BACKGROUND: Iron deficiency causes long-term adverse consequences for children and is the most common nutritional deficiency worldwide. Observational studies suggest that iron deficiency anemia protects against Plasmodium falciparum malaria and several intervention trials have indicated that iron supplementation increases malaria risk through unknown mechanism(s). This poses a major challenge for health policy. We investigated how anemia inhibits blood stage malaria infection and how iron supplementation abrogates this protection. METHODS: This observational cohort study occurred in a malaria-endemic region where sickle-cell trait is also common. We studied fresh RBCs from anemic children (135 children; age 6-24months; hemoglobin <11g/dl) participating in an iron supplementation trial (ISRCTN registry, number ISRCTN07210906) in which they received iron (12mg/day) as part of a micronutrient powder for 84days. Children donated RBCs at baseline, Day 49, and Day 84 for use in flow cytometry-based in vitro growth and invasion assays with P. falciparum laboratory and field strains. In vitro parasite growth in subject RBCs was the primary endpoint. FINDINGS: Anemia substantially reduced the invasion and growth of both laboratory and field strains of P. falciparum in vitro (~10% growth reduction per standard deviation shift in hemoglobin). The population level impact against erythrocytic stage malaria was 15.9% from anemia compared to 3.5% for sickle-cell trait. Parasite growth was 2.4 fold higher after 49days of iron supplementation relative to baseline (p<0.001), paralleling increases in erythropoiesis. INTERPRETATION: These results confirm and quantify a plausible mechanism by which anemia protects African children against falciparum malaria, an effect that is substantially greater than the protection offered by sickle-cell trait. Iron supplementation completely reversed the observed protection and hence should be accompanied by malaria prophylaxis. Lower hemoglobin levels typically seen in populations of African descent may reflect past genetic selection by malaria. FUNDING: National Institute of Child Health and Development, Bill and Melinda Gates Foundation, UK Medical Research Council (MRC) and Department for International Development (DFID) under the MRC/DFID Concordat

    Interleukin 7 from Maternal Milk Crosses the Intestinal Barrier and Modulates T- Cell Development in Offspring

    Get PDF
    Background Breastfeeding protects against illnesses and death in hazardous environments, an effect partly mediated by improved immune function. One hypothesis suggests that factors within milk supplement the inadequate immune response of the offspring, but this has not been able to account for a series of observations showing that factors within maternally derived milk may supplement the development of the immune system through a direct effect on the primary lymphoid organs. In a previous human study we reported evidence suggesting a link between IL-7 in breast milk and the thymic output of infants. Here we report evidence in mice of direct action of maternally-derived IL-7 on T cell development in the offspring. Methods and Findings  We have used recombinant IL-7 labelled with a fluorescent dye to trace the movement in live mice of IL-7 from the stomach across the gut and into the lymphoid tissues. To validate the functional ability of maternally derived IL- 7 we cross fostered IL-7 knock-out mice onto normal wild type mothers. Subsets of thymocytes and populations of peripheral T cells were significantly higher than those found in knock-out mice receiving milk from IL-7 knock-out mothers. Conclusions/Significance Our study provides direct evidence that interleukin 7, a factor which is critical in the development of T lymphocytes, when maternally derived can transfer across the intestine of the offspring, increase T cell production in the thymus and support the survival of T cells in the peripheral secondary lymphoid tissue

    Reduced streamflow in water-stressed climates consistent with CO2 effects on vegetation

    Get PDF
    Global environmental change has implications for the spatial and temporal distribution of water resources, but quantifying its effects remains a challenge. The impact of vegetation responses to increasing atmospheric CO2 concentrations on the hydrologic cycle is particularly poorly constrained1, 2, 3. Here we combine remotely sensed normalized difference vegetation index (NDVI) data and long-term water-balance evapotranspiration (ET) measurements from 190 unimpaired river basins across Australia during 1982–2010 to show that the precipitation threshold for water limitation of vegetation cover has significantly declined during the past three decades, whereas sub-humid and semi-arid basins are not only ‘greening’ but also consuming more water, leading to significant (24–28%) reductions in streamflow. In contrast, wet and arid basins show nonsignificant changes in NDVI and reductions in ET. These observations are consistent with expected effects of elevated CO2 on vegetation. They suggest that projected future decreases in precipitation4 are likely to be compounded by increased vegetation water use, further reducing streamflow in water-stressed regions

    Associations of physical activity with body weight and fat in men and women

    Full text link
    OBJECTIVE: Increasing physical activity is strongly advocated as a key public health strategy for weight gain prevention. We investigated associations of leisure-time physical activity (LTPA) and occupational/domestic physical activity with body mass index (BMI) and a skinfold-derived index of body fat (sum of six skinfolds), among normal-weight and overweight men and women.DESIGN: Analyses of cross-sectional self-report and measured anthropometric data.SUBJECTS: A total of 1302 men and women, aged 18-78 y, who were part of a randomly selected sample and who agreed to participate in a physical health assessment.MEASUREMENTS: Self-report measures of physical activity, measured height and weight, and a skinfold-derived index of body fatness.RESULTS: Higher levels of LTPA were positively associated with the likelihood of being in the normal BMI and lower body fat range for women, but few or no associations were found for men. No associations were found between measures of occupational/domestic activity and BMI or body fat for men or women.CONCLUSION: By using a skinfold sum as a more direct measure of adiposity, this study extends and confirms the previous research that has shown an association between BMI and LTPA. Our results suggest gender differences in the relationship of leisure-time physical activity with body fatness. These findings, in conjunction with a better understanding of the causes of such differences, will have important public health implications for the development and targeting of weight gain prevention strategies.<br /
    corecore