292 research outputs found

    Physical Confinement Promoting Formation of Cu2O−Au Heterostructures with Au Nanoparticles Entrapped within Crystalline Cu2O Nanorods

    Get PDF
    Building on the application of cuprite (Cu2O) in solar energy technologies and reports of increased optical absorption caused by metal-to-semiconductor energy transfer, a confinement-based strategy was developed to fabricate high aspect ratio, crystalline Cu2O nanorods containing entrapped gold nanoparticles (Au nps). Cu2O was crystallized within the confines of track-etch membrane pores, where this physical, assembly based method eliminates the necessity of specific chemical interactions to achieve a well-defined metal−semiconductor interface. With high-resolution scanning/transmission electron microscopy (S/TEM) and tomography, we demonstrate the encasement of the majority of Au nps by crystalline Cu2O and show crystalline Cu2O−Au interfaces that are free of extended amorphous regions. Such nanocrystal heterostructures are good candidates for studying the transport physics of metal/semiconductor hybrids for optoelectronic applications

    A Review of CAM for Procedural Pain in Infancy: Part I. Sucrose and Non-nutritive Sucking

    Get PDF
    There is increasing concern regarding the number of painful medical procedures that infants must undergo and the potential risks of alleviating infant pain with conventional pharmacologic agents. This article is Part I of a two-part series that aims to provide an overview of the literature on complementary and alternative (CAM) approaches for pain and distress related to medical procedures among infants up to six weeks of age. The focus of this article is a review of the empirical literature on sucrose with or without non-nutritive sucking (NNS) for procedural pain in infancy. Computerized databases were searched for relevant studies including prior reviews and primary trials. The most robust evidence was found for the analgesic effects of sucrose with or without NNS on minor procedural pain in healthy full-term infants. Despite some methodological weaknesses, the literature to date supports the use of sucrose, NNS and other sweetened solutions for the management of procedural pain in infancy

    Prospective randomized study comparing the Teleflex Medical SaphLITE Retractor to the Ethicon CardioVations Clearglide Endoscopic System

    Get PDF
    BACKGROUND: Several minimally invasive saphenous vein harvesting techniques have been developed to reduce morbidities associated with coronary artery bypass grafting. This prospective, randomized study was designed to compare two commonly used minimally invasive saphenous vein harvesting techniques, the SaphLITE Retractor System (Teleflex Medical) and the Clearglide Endoscopic Vessel Harvesting System (Ethicon CardioVations, Inc.). METHODS: Between January 2003 and March 2004, a total of 200 patients scheduled for primary, nonemergent coronary artery bypass grafting, with or without concomitant procedures were randomized into two groups: SaphLITE (n = 100) and Clearglide (n = 100). Pre-, intra- and postoperative data was collected and subjected to statistical analysis. Randomization provided homogenous groups with respect to preoperative risk factors. RESULTS: Harvest location for the SaphLITE group was thigh (n = 40), lower leg (n = 5) and both lower leg and thigh (n = 55). The location of harvest for the Clearglide group was thigh (n = 3), lower leg (n = 16) and both lower leg and thigh (n = 81). The mean incision length was 3.6 cm (range, 2–6) in the SaphLITE group versus 2.1 cm (range, 1–4) in the Clearglide group (p < 0.05). The total incision length was 12.9 cm versus 8.9 (p < 0.05) in the SaphLITE and Clearglide groups. Conversion to the open technique occurred in 5 SaphLITE patients and 7 Clearglide patients. Intraoperative leg exploration for bleeding occurred in two of the Clearglide patients and none of the SaphLITE patients. Post-operative complications specifically related to minimally invasive harvesting technique, including a two-week post-discharge visit, were not statistically different between the groups. CONCLUSION: The saphenous vein can be safely harvested utilizing the SaphLITE and Clearglide systems. While the Clearglide system allows for fewer incisions (number and length) and less harvest time, these benefits may be outweighed by the increased cost of the Clearglide system compared to the SaphLITE retractor

    Rho-kinase-dependent F-actin rearrangement is involved in the inhibition of PI3-kinase/Akt during ischemia–reperfusion-induced endothelial cell apoptosis

    Get PDF
    Activation of cytoskeleton regulator Rho-kinase during ischemia–reperfusion (I/R) plays a major role in I/R injury and apoptosis. Since Rho-kinase is a negative regulator of the pro-survival phosphatidylinositol 3-kinase (PI3-kinase)/Akt pathway, we hypothesized that inhibition of Rho-kinase can prevent I/R-induced endothelial cell apoptosis by maintaining PI3-kinase/Akt activity and that protective effects of Rho-kinase inhibition are facilitated by prevention of F-actin rearrangement. Human umbilical vein endothelial cells were subjected to 1 h of simulated ischemia and 1 or 24 h of simulated reperfusion after treatment with Rho-kinase inhibitor Y-27632, PI3-kinase inhibitor wortmannin, F-actin depolymerizers cytochalasinD and latrunculinA and F-actin stabilizer jasplakinolide. Intracellular ATP levels decreased following I/R. Y-27632 treatment reduced I/R-induced apoptosis by 31% (P < 0.01) and maintained Akt activity. Both effects were blocked by co-treatment with wortmannin. Y-27632 treatment prevented the formation of F-actin bundles during I/R. Similar results were observed with cytochalasinD treatment. In contrast, latrunculinA and jasplakinolide treatment did not prevent the formation of F-actin bundles during I/R and had no effect on I/R-induced apoptosis. Apoptosis and Akt activity were inversely correlated (R2 = 0.68, P < 0.05). In conclusion, prevention of F-actin rearrangement by Rho-kinase inhibition or by cytochalasinD treatment attenuated I/R-induced endothelial cell apoptosis by maintaining PI3-kinase and Akt activity

    Galanin Receptor 1 Deletion Exacerbates Hippocampal Neuronal Loss after Systemic Kainate Administration in Mice

    Get PDF
    Galanin is a neuropeptide with a wide distribution in the central and peripheral nervous systems and whose physiological effects are mediated through three G protein-coupled receptor subtypes, GalR1, GalR2, and GalR3. Several lines of evidence indicate that galanin, as well as activation of the GalR1 receptor, is a potent and effective modulator of neuronal excitability in the hippocampus.In order to test more formally the potential influence of GalR1 on seizure-induced excitotoxic cell death, we conducted functional complementation tests in which transgenic mice that exhibit decreased expression of the GalR1 candidate mRNA underwent kainate-induced status epilepticus to determine if the quantitative trait of susceptibility to seizure-induced cell death is determined by the activity of GalR1. In the present study, we report that reduction of GalR1 mRNA via null mutation or injection of the GalR1 antagonist, galantide, prior to kainate-induced status epilepticus induces hippocampal damage in a mouse strain known to be highly resistant to kainate-induced neuronal injury. Wild-type and GalR1 knockout mice were subjected to systemic kainate administration. Seven days later, Nissl and NeuN immune- staining demonstrated that hippocampal cell death was significantly increased in GalR1 knockout strains and in animals injected with the GalR1 antagonist. Compared to GalR1-expressing mice, GalR1-deficient mice had significantly larger hippocampal lesions after status epilepticus.Our results suggest that a reduction of GalR1 expression in the C57BL/6J mouse strain renders them susceptible to excitotoxic injury following systemic kainate administration. From these results, GalR1 protein emerges as a new molecular target that may have a potential therapeutic value in modulating seizure-induced cell death

    Protection and consolidation of stone heritage by self-inoculation with indigenous carbonatogenic bacterial communities

    Get PDF
    Enhanced salt weathering resulting from global warming and increasing environmental pollution is endangering the survival of stone monuments and artworks. To mitigate the effects of these deleterious processes, numerous conservation treatments have been applied that, however, show limited efficacy. Here we present a novel, environmentally friendly, bacterial self-inoculation approach for the conservation of stone, based on the isolation of an indigenous community of carbonatogenic bacteria from salt damaged stone, followed by their culture and re-application back onto the same stone. This method results in an effective consolidation and protection due to the formation of an abundant and exceptionally strong hybrid cement consisting of nanostructured bacterial CaCO3 and bacterially derived organics, and the passivating effect of bacterial exopolymeric substances (EPS) covering the substrate. The fact that the isolated and identified bacterial community is common to many stone artworks may enable worldwide application of this novel conservation methodology.This work was supported by the Spanish Government (Grants MAT2012-37584, CGL2012-35992 and CGL2015-70642-R), the Junta de Andalucía through Proyecto de excelencia RNM-3493 and Project P11-RNM-7550, the Research Groups BIO 103 and RNM-179, and the University of Granada (Unidad Científica de Excelencia UCE-PP2016-05). Additional funds were provided by the Molecular Foundry (Lawrence Berkeley National Laboratory, LBNL, University of California, Berkeley, CA) for a research stay of M.S. (project #1451; User Agreement No. NPUSR009206)

    Intermolecular channels direct crystal orientation in mineralized collagen

    Get PDF
    The mineralized collagen fibril is the basic building block of bone, and is commonly pictured as a parallel array of ultrathin carbonated hydroxyapatite (HAp) platelets distributed throughout the collagen. This orientation is often attributed to an epitaxial relationship between the HAp and collagen molecules inside 2D voids within the fibril. Although recent studies have questioned this model, the structural relationship between the collagen matrix and HAp, and the mechanisms by which collagen directs mineralization remain unclear. Here, we use XRD to reveal that the voids in the collagen are in fact cylindrical pores with diameters of ~2 nm, while electron microscopy shows that the HAp crystals in bone are only uniaxially oriented with respect to the collagen. From in vitro mineralization studies with HAp, CaCO3 and γ-FeOOH we conclude that confinement within these pores, together with the anisotropic growth of HAp, dictates the orientation of HAp crystals within the collagen fibril

    Preconditioning with Physiological Levels of Ethanol Protect Kidney against Ischemia/Reperfusion Injury by Modulating Oxidative Stress

    Get PDF
    Oxidative stress due to excessive production of reactive oxygen species (ROS) and subsequent lipid peroxidation plays a critical role in renal ischemia/reperfusion (IR) injury. The purpose of current study is to demonstrate the effect of antecedent ethanol exposure on IR-induced renal injury by modulation of oxidative stress.Bilateral renal warm IR was induced in male C57BL/6 mice after ethanol or saline administration. Blood ethanol concentration, kidney function, histological damage, inflammatory infiltration, cytokine production, oxidative stress, antioxidant capacity and Aldehyde dehydrogenase (ALDH) enzymatic activity were assessed to evaluate the impact of antecedent ethanol exposure on IR-induced renal injury.After bilateral kidney ischemia, mice preconditioned with physiological levels of ethanol displayed significantly preserved renal function along with less histological tubular damage as manifested by the reduced inflammatory infiltration and cytokine production. Mechanistic studies revealed that precondition of mice with physiological levels of ethanol 3 h before IR induction enhanced antioxidant capacity characterized by significantly higher superoxidase dismutase (SOD) activities. Our studies further demonstrated that ethanol pretreatment specifically increased ALDH2 activity, which then suppressed lipid peroxidation by promoting the detoxification of Malondialdehyde (MDA) and 4-hydroxynonenal (HNE).Our results provide first line of evidence indicating that antecedent ethanol exposure can provide protection for kidneys against IR-induced injury by enhancing antioxidant capacity and preventing lipid peroxidation. Therefore, ethanol precondition and ectopic ALDH2 activation could be potential therapeutic approaches to prevent renal IR injury relevant to various clinical conditions
    corecore