184 research outputs found
Different atmospheric moisture divergence responses to extreme and moderate El Niños
On seasonal and inter-annual time scales, vertically integrated moisture divergence provides a useful measure of the tropical atmospheric hydrological cycle. It reflects the combined dynamical and thermodynamical effects, and is not subject to the limitations that afflict observations of evaporation minus precipitation. An empirical orthogonal function (EOF) analysis of the tropical Pacific moisture divergence fields calculated from the ERA-Interim reanalysis reveals the dominant effects of the El Niño-Southern Oscillation (ENSO) on inter-annual time scales. Two EOFs are necessary to capture the ENSO signature, and regression relationships between their Principal Components and indices of equatorial Pacific sea surface temperature (SST) demonstrate that the transition from strong La Niña through to extreme El Niño events is not a linear one. The largest deviation from linearity is for the strongest El Niños, and we interpret that this arises at least partly because the EOF analysis cannot easily separate different patterns of responses that are not orthogonal to each other. To overcome the orthogonality constraints, a self-organizing map (SOM) analysis of the same moisture divergence fields was performed. The SOM analysis captures the range of responses to ENSO, including the distinction between the moderate and strong El Niños identified by the EOF analysis. The work demonstrates the potential for the application of SOM to large scale climatic analysis, by virtue of its easier interpretation, relaxation of orthogonality constraints and its versatility for serving as an alternative classification method. Both the EOF and SOM analyses suggest a classification of “moderate” and “extreme” El Niños by their differences in the magnitudes of the hydrological cycle responses, spatial patterns and evolutionary paths. Classification from the moisture divergence point of view shows consistency with results based on other physical variables such as SST
Extragalactic Radio Continuum Surveys and the Transformation of Radio Astronomy
Next-generation radio surveys are about to transform radio astronomy by
discovering and studying tens of millions of previously unknown radio sources.
These surveys will provide new insights to understand the evolution of
galaxies, measuring the evolution of the cosmic star formation rate, and
rivalling traditional techniques in the measurement of fundamental cosmological
parameters. By observing a new volume of observational parameter space, they
are also likely to discover unexpected new phenomena. This review traces the
evolution of extragalactic radio continuum surveys from the earliest days of
radio astronomy to the present, and identifies the challenges that must be
overcome to achieve this transformational change.Comment: To be published in Nature Astronomy 18 Sept 201
Older adults' beliefs about physician-estimated life expectancy: a cross-sectional survey
BACKGROUND: Estimates of life expectancy assist physicians and patients in medical decision-making. The time-delayed benefits for many medical treatments make an older adult's life expectancy estimate particularly important for physicians. The purpose of this study is to assess older adults' beliefs about physician-estimated life expectancy. METHODS: We performed a mixed qualitative-quantitative cross-sectional study in which 116 healthy adults aged 70+ were recruited from two local retirement communities. We interviewed them regarding their beliefs about physician-estimated life expectancy in the context of a larger study on cancer screening beliefs. Semi-structured interviews of 80 minutes average duration were performed in private locations convenient to participants. Demographic characteristics as well as cancer screening beliefs and beliefs about life expectancy were measured. Two independent researchers reviewed the open-ended responses and recorded the most common themes. The research team resolved disagreements by consensus. RESULTS: This article reports the life-expectancy results portion of the larger study. The study group (n = 116) was comprised of healthy, well-educated older adults, with almost a third over 85 years old, and none meeting criteria for dementia. Sixty-four percent (n = 73) felt that their physicians could not correctly estimate their life expectancy. Sixty-six percent (n = 75) wanted their physicians to talk with them about their life expectancy. The themes that emerged from our study indicate that discussions of life expectancy could help older adults plan for the future, maintain open communication with their physicians, and provide them knowledge about their medical conditions. CONCLUSION: The majority of the healthy older adults in this study were open to discussions about life expectancy in the context of discussing cancer screening tests, despite awareness that their physicians' estimates could be inaccurate. Since about a third of participants perceived these discussions as not useful or even harmful, physicians should first ascertain patients' preferences before discussing their life expectancies
The efficacy of high-throughput sequencing and target enrichment on charred archaeobotanical remains
The majority of archaeological plant material is preserved in a charred state. Obtaining reliable ancient DNA data from these remains has presented challenges due to high rates of nucleotide damage, short DNA fragment lengths, low endogenous DNA content and the potential for modern contamination. It has been suggested that high-throughput sequencing (HTS) technologies coupled with DNA enrichment techniques may overcome some of these limitations. Here we report the findings of HTS and target enrichment on four important archaeological crops (barley, grape, maize and rice) performed in three different laboratories, presenting the largest HTS assessment of charred archaeobotanical specimens to date. Rigorous analysis of our data-excluding false-positives due to background contamination or incorrect index assignments-indicated a lack of endogenous DNA in nearly all samples, except for one lightly-charred maize cob. Even with target enrichment, this sample failed to yield adequate data required to address fundamental questions in archaeology and biology. We further reanalysed part of an existing dataset on charred plant material, and found all purported endogenous DNA sequences were likely to be spurious. We suggest these technologies are not suitable for use with charred archaeobotanicals and urge great caution when interpreting data obtained by HTS of these remains
The history of Coast Salish “woolly dogs” revealed by ancient genomics and Indigenous Knowledge
Ancestral Coast Salish societies in the Pacific Northwest kept long-haired "woolly dogs" that were bred and cared for over millennia. However, the dog wool-weaving tradition declined during the 19th century, and the population was lost. In this study, we analyzed genomic and isotopic data from a preserved woolly dog pelt from "Mutton," collected in 1859. Mutton is the only known example of an Indigenous North American dog with dominant precolonial ancestry postdating the onset of settler colonialism. We identified candidate genetic variants potentially linked with their distinct woolly phenotype. We integrated these data with interviews from Coast Salish Elders, Knowledge Keepers, and weavers about shared traditional knowledge and memories surrounding woolly dogs, their importance within Coast Salish societies, and how colonial policies led directly to their disappearance
Adaptations to Climate-Mediated Selective Pressures in Humans
Humans inhabit a remarkably diverse range of environments, and adaptation through natural selection has likely played a central role in the capacity to survive and thrive in extreme climates. Unlike numerous studies that used only population genetic data to search for evidence of selection, here we scan the human genome for selection signals by identifying the SNPs with the strongest correlations between allele frequencies and climate across 61 worldwide populations. We find a striking enrichment of genic and nonsynonymous SNPs relative to non-genic SNPs among those that are strongly correlated with these climate variables. Among the most extreme signals, several overlap with those from GWAS, including SNPs associated with pigmentation and autoimmune diseases. Further, we find an enrichment of strong signals in gene sets related to UV radiation, infection and immunity, and cancer. Our results imply that adaptations to climate shaped the spatial distribution of variation in humans
Genomic Characterization and High Prevalence of Bocaviruses in Swine
Using random PCR amplification followed by plasmid subcloning and DNA sequencing, we detected bocavirus related sequences in 9 out of 17 porcine stool samples. Using primer walking, we sequenced the nearly complete genomes of two highly divergent bocaviruses we provisionally named porcine bocavirus 1 isolate H18 (PBoV1-H18) and porcine bocavirus 2 isolate A6 (PBoV2-A6) which differed by 51.8% in their NS1 protein. Phylogenetic analysis indicated that PBoV1-H18 was very closely related to a ∼2 Kb central region of a porcine bocavirus-like virus (PBo-LikeV) from Sweden described in 2009. PBoV2-A6 was very closely related to the porcine bocavirus genomes PBoV-1 and PBoV2 from China described in 2010. Among 340 fecal samples collected from different age, asymptomatic swine in five Chinese provinces, the prevalence of PBoV1-H18 and PBoV2-A6 related viruses were 45–75% and 55–70% respectively, with 30–47% of pigs co-infected. PBoV1-A6 related strains were highly conserved, while PBoV2-H18 related strains were more diverse, grouping into two genotypes corresponding to the previously described PBoV1 and PBoV2. Together with the recently described partial bocavirus genomes labeled V6 and V7, a total of three major porcine bocavirus clades have therefore been described to date. Further studies will be required to elucidate the possible pathogenic impact of these diverse bocaviruses either alone or in combination with other porcine viruses
Phenomenological models of synaptic plasticity based on spike timing
Synaptic plasticity is considered to be the biological substrate of learning and memory. In this document we review phenomenological models of short-term and long-term synaptic plasticity, in particular spike-timing dependent plasticity (STDP). The aim of the document is to provide a framework for classifying and evaluating different models of plasticity. We focus on phenomenological synaptic models that are compatible with integrate-and-fire type neuron models where each neuron is described by a small number of variables. This implies that synaptic update rules for short-term or long-term plasticity can only depend on spike timing and, potentially, on membrane potential, as well as on the value of the synaptic weight, or on low-pass filtered (temporally averaged) versions of the above variables. We examine the ability of the models to account for experimental data and to fulfill expectations derived from theoretical considerations. We further discuss their relations to teacher-based rules (supervised learning) and reward-based rules (reinforcement learning). All models discussed in this paper are suitable for large-scale network simulations
- …