300 research outputs found

    Tissue Type-Specific Expression of the dsRNA-Binding Protein 76 and Genome-Wide Elucidation of Its Target mRNAs

    Get PDF
    Background: RNA-binding proteins accompany all steps in the life of mRNAs and provide dynamic gene regulatory functions for rapid adjustment to changing extra-or intracellular conditions. The association of RNA-binding proteins with their targets is regulated through changing subcellular distribution, post-translational modification or association with other proteins. Methodology: We demonstrate that the dsRNA binding protein 76 (DRBP76), synonymous with nuclear factor 90, displays inherently distinct tissue type-specific subcellular distribution in the normal human central nervous system and in malignant brain tumors of glial origin. Altered subcellular localization and isoform distribution in malignant glioma indicate that tumor-specific changes in DRBP76-related gene products and their regulatory functions may contribute to the formation and/or maintenance of these tumors. To identify endogenous mRNA targets of DRBP76, we performed RNA-immunoprecipitation and genome-wide microarray analyses in HEK293 cells, and identified specific classes of transcripts encoding critical functions in cellular metabolism. Significance: Our data suggest that physiologic DRBP76 expression, isoform distribution and subcellular localization are profoundly altered upon malignant transformation. Thus, the functional role of DRBP76 in co- or post-transcriptional gene regulation may contribute to the neoplastic phenotype

    Proteome-Wide Search Reveals Unexpected RNA-Binding Proteins in Saccharomyces cerevisiae

    Get PDF
    The vast landscape of RNA-protein interactions at the heart of post-transcriptional regulation remains largely unexplored. Indeed it is likely that, even in yeast, a substantial fraction of the regulatory RNA-binding proteins (RBPs) remain to be discovered. Systematic experimental methods can play a key role in discovering these RBPs - most of the known yeast RBPs lack RNA-binding domains that might enable this activity to be predicted. We describe here a proteome-wide approach to identify RNA-protein interactions based on in vitro binding of RNA samples to yeast protein microarrays that represent over 80% of the yeast proteome. We used this procedure to screen for novel RBPs and RNA-protein interactions. A complementary mass spectrometry technique also identified proteins that associate with yeast mRNAs. Both the protein microarray and mass spectrometry methods successfully identify previously annotated RBPs, suggesting that other proteins identified in these assays might be novel RBPs. Of 35 putative novel RBPs identified by either or both of these methods, 12, including 75% of the eight most highly-ranked candidates, reproducibly associated with specific cellular RNAs. Surprisingly, most of the 12 newly discovered RBPs were enzymes. Functional characteristics of the RNA targets of some of the novel RBPs suggest coordinated post-transcriptional regulation of subunits of protein complexes and a possible link between mRNA trafficking and vesicle transport. Our results suggest that many more RBPs still remain to be identified and provide a set of candidates for further investigation

    Skeletal carbonate mineralogy of Scottish bryozoans

    Get PDF
    This paper describes the skeletal carbonate mineralogy of 156 bryozoan species collected from Scotland (sourced both from museum collections and from waters around Scotland) and collated from literature. This collection represents 79% of the species which inhabit Scottish waters and is a greater number and proportion of extant species than any previous regional study. The study is also of significance globally where the data augment the growing database of mineralogical analyses and offers first analyses for 26 genera and four families. Specimens were collated through a combination of field sampling and existing collections and were analysed by X-ray diffraction (XRD) and micro-XRD to determine wt% MgCO3 in calcite and wt% aragonite. Species distribution data and phylogenetic organisation were applied to understand distributional, taxonomic and phylo-mineralogical patterns. Analysis of the skeletal composition of Scottish bryozoans shows that the group is statistically different from neighbouring Arctic fauna but features a range of mineralogy comparable to other temperate regions. As has been previously reported, cyclostomes feature low Mg in calcite and very little aragonite, whereas cheilostomes show much more variability, including bimineralic species. Scotland is a highly variable region, open to biological and environmental influx from all directions, and bryozoans exhibit this in the wide range of within-species mineralogical variability they present. This plasticity in skeletal composition may be driven by a combination of environmentally-induced phenotypic variation, or physiological factors. A flexible response to environment, as manifested in a wide range of skeletal mineralogy within a species, may be one characteristic of successful invasive bryozoans

    Posterior shoulder tightness; an intersession reliability study of 3 clinical tests.

    Get PDF
    Background Although posterior shoulder tightness (PST) has been associated with shoulder pathology and altered glenohumeral joint kinematics, uncertainty remains regarding its cause and definition. To understand the efficacy of treatments for PST, it must be possible to identify people with PST for the purposes of research and clinical decision-making. Clinical tests for PST must demonstrate acceptable levels of measurement reliability in order to identify the condition and to evaluate the response to intervention. There is currently a lack of research describing intersession reliability for measures of PST. The aim of this study was to quantify the inter-session reliability for three clinical tests used to identify PST over a 6–10 week interval. Methods A convenience sample of 26 asymptomatic adult participants (52 shoulders) were recruited from a university setting over a five-month duration. Participants attended the human movement laboratory for measurement of glenohumeral joint internal rotation, horizontal adduction and low flexion on two occasions separated by an interval of 6–10 weeks. Intra-class correlation coefficients were calculated from the mean square values derived from the within-subject, single factor (repeated measures) ANOVA. Test-retest measurement stability was evaluated by calculating the standard error of measurement and the minimum detectable change for each measurement. Results All 3 tests demonstrated good intersession intra-rater reliability (0.86–0.88), and the standard error of measurement (95%) were 7.3° for glenohumeral horizontal adduction, 9.4° for internal rotation, and 6.9° for low flexion. The minimum detectable change for glenohumeral horizontal adduction was 10.2°, internal rotation was 13.3°, and low flexion was 9.7°. Conclusion In this population of people without symptoms, the 3 measures of PST all demonstrated acceptable inter-session reliability. The standard error of measurement and minimum detectable change results can be used to determine if a change in measures of PST are due to measurement error or an actual change over time.Peer reviewe

    The Aedes aegypti Toll Pathway Controls Dengue Virus Infection

    Get PDF
    Aedes aegypti, the mosquito vector of dengue viruses, utilizes its innate immune system to ward off a variety of pathogens, some of which can cause disease in humans. To date, the features of insects' innate immune defenses against viruses have mainly been studied in the fruit fly Drosophila melanogaster, which appears to utilize different immune pathways against different types of viruses, in addition to an RNA interference–based defense system. We have used the recently released whole-genome sequence of the Ae. aegypti mosquito, in combination with high-throughput gene expression and RNA interference (RNAi)-based reverse genetic analyses, to characterize its response to dengue virus infection in different body compartments. We have further addressed the impact of the mosquito's endogenous microbial flora on virus infection. Our findings indicate a significant role for the Toll pathway in regulating resistance to dengue virus, as indicated by an infection-responsive regulation and functional assessment of several Toll pathway–associated genes. We have also shown that the mosquito's natural microbiota play a role in modulating the dengue virus infection, possibly through basal-level stimulation of the Toll immune pathway

    Synthetic human cell fate regulation by protein-driven RNA switches

    Get PDF
    Understanding how to control cell fate is crucial in biology, medical science and engineering. In this study, we introduce a method that uses an intracellular protein as a trigger for regulating human cell fate. The ON/OFF translational switches, composed of an intracellular protein L7Ae and its binding RNA motif, regulate the expression of a desired target protein and control two distinct apoptosis pathways in target human cells. Combined use of the switches demonstrates that a specific protein can simultaneously repress and activate the translation of two different mRNAs: one protein achieves both up- and downregulation of two different proteins/pathways. A genome-encoded protein fused to L7Ae controlled apoptosis in both directions (death or survival) depending on its cellular expression. The method has potential for curing cellular defects or improving the intracellular production of useful molecules by bypassing or rewiring intrinsic signal networks

    Utility of the Health of the Nation Outcome Scales (HoNOS) in Predicting Mental Health Service Costs for Patients with Common Mental Health Problems : Historical Cohort Study

    Get PDF
    BACKGROUND: Few countries have made much progress in implementing transparent and efficient systems for the allocation of mental health care resources. In England there are ongoing efforts by the National Health Service (NHS) to develop mental health 'payment by results' (PbR). The system depends on the ability of patient 'clusters' derived from the Health of the Nation Outcome Scales (HoNOS) to predict costs. We therefore investigated the associations of individual HoNOS items and the Total HoNOS score at baseline with mental health service costs at one year follow-up.METHODS: An historical cohort study using secondary care patient records from the UK financial year 2012-2013. Included were 1,343 patients with 'common mental health problems', represented by ICD-10 disorders between F32-48. Costs were based on patient contacts with community-based and hospital-based mental health services. The costs outcome was transformed into 'high costs' vs 'regular costs' in main analyses.RESULTS: After adjustment for covariates, 11 HoNOS items were not associated with costs. The exception was 'self-injury' with an odds ratio of 1.41 (95% CI 1.10-2.99). Population attributable fractions (PAFs) for the contribution of HoNOS items to high costs ranged from 0.6% (physical illness) to 22.4% (self-injury). After adjustment, the Total HoNOS score was not associated with costs (OR 1.03, 95% CI 0.99-1.07). However, the PAF (33.3%) demonstrated that it might account for a modest proportion of the incidence of high costs.CONCLUSIONS: Our findings provide limited support for the utility of the self-injury item and Total HoNOS score in predicting costs. However, the absence of associations for the remaining HoNOS items indicates that current PbR clusters have minimal ability to predict costs, so potentially contributing to a misallocation of NHS resources across England. The findings may inform the development of mental health payment systems internationally, especially since the vast majority of countries have not progressed past the early stages of this development. Discrepancies between our findings with those from Australia and New Zealand point to the need for further international investigations

    Arbovirus-Derived piRNAs Exhibit a Ping-Pong Signature in Mosquito Cells

    Get PDF
    The siRNA pathway is an essential antiviral mechanism in insects. Whether other RNA interference pathways are involved in antiviral defense remains unclear. Here, we report in cells derived from the two main vectors for arboviruses, Aedes albopictus and Aedes aegypti, the production of viral small RNAs that exhibit the hallmarks of ping-pong derived piwi-associated RNAs (piRNAs) after infection with positive or negative sense RNA viruses. Furthermore, these cells produce endogenous piRNAs that mapped to transposable elements. Our results show that these mosquito cells can initiate de novo piRNA production and recapitulate the ping-pong dependent piRNA pathway upon viral infection. The mechanism of viral-piRNA production is discussed

    Human Mesenchymal Stem Cells Prolong Survival and Ameliorate Motor Deficit through Trophic Support in Huntington's Disease Mouse Models

    Get PDF
    We investigated the therapeutic potential of human bone marrow-derived mesenchymal stem cells (hBM-MSCs) in Huntington's disease (HD) mouse models. Ten weeks after intrastriatal injection of quinolinic acid (QA), mice that received hBM-MSC transplantation showed a significant reduction in motor function impairment and increased survival rate. Transplanted hBM-MSCs were capable of survival, and inducing neural proliferation and differentiation in the QA-lesioned striatum. In addition, the transplanted hBM-MSCs induced microglia, neuroblasts and bone marrow-derived cells to migrate into the QA-lesioned region. Similar results were obtained in R6/2-J2, a genetically-modified animal model of HD, except for the improvement of motor function. After hBM-MSC transplantation, the transplanted hBM-MSCs may integrate with the host cells and increase the levels of laminin, Von Willebrand Factor (VWF), stromal cell-derived factor-1 (SDF-1), and the SDF-1 receptor Cxcr4. The p-Erk1/2 expression was increased while Bax and caspase-3 levels were decreased after hBM-MSC transplantation suggesting that the reduced level of apoptosis after hBM-MSC transplantation was of benefit to the QA-lesioned mice. Our data suggest that hBM-MSCs have neural differentiation improvement potential, neurotrophic support capability and an anti-apoptotic effect, and may be a feasible candidate for HD therapy

    Optogenetic control of Drosophila using a red-shifted channelrhodopsin reveals experience-dependent influences on courtship

    Get PDF
    Optogenetics allows the manipulation of neural activity in freely moving animals with millisecond precision, but its application in Drosophila melanogaster has been limited. Here we show that a recently described red activatable channelrhodopsin (ReaChR) permits control of complex behavior in freely moving adult flies, at wavelengths that are not thought to interfere with normal visual function. This tool affords the opportunity to control neural activity over a broad dynamic range of stimulation intensities. Using time-resolved activation, we show that the neural control of male courtship song can be separated into (i) probabilistic, persistent and (ii) deterministic, command-like components. The former, but not the latter, neurons are subject to functional modulation by social experience, which supports the idea that they constitute a locus of state-dependent influence. This separation is not evident using thermogenetic tools, a result underscoring the importance of temporally precise control of neuronal activation in the functional dissection of neural circuits in Drosophila
    corecore