71 research outputs found

    Association between hMLH1 hypermethylation and JC virus (JCV) infection in human colorectal cancer (CRC)

    Get PDF
    Incorporation of viral DNA may interfere with the normal sequence of human DNA bases on the genetic level or cause secondary epigenetic changes such as gene promoter methylation or histone acetylation. Colorectal cancer (CRC) is the second leading cause of cancer mortality in the USA. Chromosomal instability (CIN) was established as the key mechanism in cancer development. Later, it was found that CRC results not only from the progressive accumulation of genetic alterations but also from epigenetic changes. JC virus (JCV) is a candidate etiologic factor in sporadic CRC. It may act by stabilizing β-catenin, facilitating its entrance to the cell nucleus, initialing proliferation and cancer development. Diploid CRC cell lines transfected with JCV-containing plasmids developed CIN. This result provides direct experimental evidence for the ability of JCV T-Ag to induce CIN in the genome of colonic epithelial cells. The association of CRC hMLH1 methylation and tumor positivity for JCV was recently documented. JC virus T-Ag DNA sequences were found in 77% of CRCs and are associated with promoter methylation of multiple genes. hMLH1 was methylated in 25 out of 80 CRC patients positive for T-Ag (31%) in comparison with only one out of 11 T-Ag negative cases (9%). Thus, JCV can mediate both CIN and aberrant methylation in CRC. Like other viruses, chronic infection with JCV may induce CRC by different mechanisms which should be further investigated. Thus, gene promoter methylation induced by JCV may be an important process in CRC and the polyp-carcinoma sequence

    Prognostic Significance and Gene Expression Profiles of p53 Mutations in Microsatellite-Stable Stage III Colorectal Adenocarcinomas

    Get PDF
    Although the prognostic value of p53 abnormalities in Stage III microsatellite stable (MSS) colorectal cancers (CRCs) is known, the gene expression profiles specific to the p53 status in the MSS background are not known. Therefore, the current investigation has focused on identification and validation of the gene expression profiles associated with p53 mutant phenotypes in MSS Stage III CRCs. Genomic DNA extracted from 135 formalin-fixed paraffin-embedded tissues, was analyzed for microsatellite instability (MSI) and p53 mutations. Further, mRNA samples extracted from five p53-mutant and five p53-wild-type MSS-CRC snap-frozen tissues were profiled for differential gene expression by Affymetrix Human Genome U133 Plus 2.0 arrays. Differentially expressed genes were further validated by the high-throughput quantitative nuclease protection assay (qNPA), and confirmed by quantitative real-time polymerase chain reaction (qRT-PCR) and by immunohistochemistry (IHC). Survival rates were estimated by Kaplan-Meier and Cox regression analyses. A higher incidence of p53 mutations was found in MSS (58%) than in MSI (30%) phenotypes. Both univariate (log-rank, P = 0.025) and multivariate (hazard ratio, 2.52; 95% confidence interval, 1.25–5.08) analyses have demonstrated that patients with MSS-p53 mutant phenotypes had poor CRC-specific survival when compared to MSS-p53 wild-type phenotypes. Gene expression analyses identified 84 differentially expressed genes. Of 49 down-regulated genes, LPAR6, PDLIM3, and PLAT, and, of 35 up-regulated genes, TRIM29, FUT3, IQGAP3, and SLC6A8 were confirmed by qNPA, qRT-PCR, and IHC platforms. p53 mutations are associated with poor survival of patients with Stage III MSS CRCs and p53-mutant and wild-type phenotypes have distinct gene expression profiles that might be helpful in identifying aggressive subsets

    Inter-relationship between microsatellite instability, thymidylate synthase expression, and p53 status in colorectal cancer: implications for chemoresistance

    Get PDF
    BACKGROUND: Studies indicate that thymidylate synthase (TS) expression, p53 and mismatch repair status have potential to influence colorectal cancer (CRC) outcome. There is, however, little data on the inter-relationship between these three markers. We sought to investigate whether relationships exist between these markers that might contribute to CRC phenotypes. METHODS: Four hundred and forty-one stage I-III CRCs were investigated. p53 status and TS expression were assessed by standard immunohistochemistry methods. Mismatch repair status was determined by assessment of microsatellite instability (MSI) using radiolabelled microsatellite genotyping. RESULTS: 244 tumours (55%) over-expressed p53, and 259 (58%) expressed high TS levels. 65 tumours (15%) had MSI. A significant relationship between p53 over-expression and high TS expression was observed (p = 0.01). This was independent of MSI status. A highly significant inverse relationship between MSI and p53 status was observed (p = 0.001). No relationship was seen between MSI status and TS expression (p = 0.59). CONCLUSION: Relationships exist between p53 status and TS expression, and MSI and p53 status. These inter-relationships may contribute to the clinical phenotype of CRCs associated with each of the molecular markers. High TS expression is unlikely to account for the clinical behaviour of CRCs with MSI

    TGFBR2 and BAX Mononucleotide Tract Mutations, Microsatellite Instability, and Prognosis in 1072 Colorectal Cancers

    Get PDF
    Mononucleotide tracts in the coding regions of the TGFBR2 and BAX genes are commonly mutated in microsatellite instability-high (MSI-high) colon cancers. The receptor TGFBR2 plays an important role in the TGFB1 (transforming growth factor-β, TGF-β) signaling pathway, and BAX plays a key role in apoptosis. However, a role of TGFBR2 or BAX mononucleotide mutation in colorectal cancer as a prognostic biomarker remains uncertain.We utilized a database of 1072 rectal and colon cancers in two prospective cohort studies (the Nurses' Health Study and the Health Professionals Follow-up Study). Cox proportional hazards model was used to compute mortality hazard ratio (HR), adjusted for clinical, pathological and molecular features including the CpG island methylator phenotype (CIMP), LINE-1 methylation, and KRAS, BRAF and PIK3CA mutations. MSI-high was observed in 15% (162/1072) of all colorectal cancers. TGFBR2 and BAX mononucleotide mutations were detected in 74% (117/159) and 30% (48/158) of MSI-high tumors, respectively. In Kaplan-Meier analysis as well as univariate and multivariate Cox regression analyses, compared to microsatellite stable (MSS)/MSI-low cases, MSI-high cases were associated with superior colorectal cancer-specific survival [adjusted HR, 0.34; 95% confidence interval (CI), 0.20-0.57] regardless of TGFBR2 or BAX mutation status. Among MSI-high tumors, TGFBR2 mononucleotide mutation was associated with CIMP-high independent of other variables [multivariate odds ratio, 3.57; 95% CI, 1.66-7.66; p = 0.0011].TGFBR2 or BAX mononucleotide mutations are not associated with the patient survival outcome in MSI-high colorectal cancer. Our data do not support those mutations as prognostic biomarkers (beyond MSI) in colorectal carcinoma

    Activation of Cell Cycle Arrest and Apoptosis by the Proto-Oncogene Pim-2

    Get PDF
    Potent survival effects have been ascribed to the serine/threonine kinase proto-oncogene PIM-2. Elevated levels of PIM-2 are associated with various malignancies. In human cells, a single Pim-2 transcript gives rise mainly to two protein isoforms (34, 41 kDa) that share an identical catalytic site but differ at their N-terminus, due to in-frame alternative translation initiation sites. In this study we observed that the 34 kDa PIM-2 isoform has differential nuclear and cytoplasmic forms in all tested cell lines, suggesting a possible role for the balance between these forms for PIM-2's function. To further study the cellular role of the 34 kDa isoform of PIM-2, an N-terminally HA-tagged form of this isoform was transiently expressed in HeLa cells. Surprisingly, this resulted in increased level of G1 arrested cells, as well as of apoptotic cells. These effects could not be obtained by a Flag-tagged form of the 41 kDa isoform. The G1 arrest and apoptotic effects were associated with an increase in T14/Y15 phosphorylation of CDK2 and proteasom-dependent down-regulation of CDC25A, as well as with up-regulation of p57, E2F-1, and p73. No such effects were obtained upon over-expression of a kinase-dead form of the HA-tagged 34 kDa PIM-2. By either using a dominant negative form of p73, or by over-expressing the 34 kDa PIM-2 in p73-silenced cells, we demonstrated that these effects were p73-dependent. These results demonstrate that while PIM-2 can function as a potent survival factor, it can, under certain circumstances, exhibit pro-apoptotic effects as well

    The Endoplasmic Reticulum Stress Response in Neuroprogressive Diseases: Emerging Pathophysiological Role and Translational Implications

    Get PDF
    The endoplasmic reticulum (ER) is the main cellular organelle involved in protein synthesis, assembly and secretion. Accumulating evidence shows that across several neurodegenerative and neuroprogressive diseases, ER stress ensues, which is accompanied by over-activation of the unfolded protein response (UPR). Although the UPR could initially serve adaptive purposes in conditions associated with higher cellular demands and after exposure to a range of pathophysiological insults, over time the UPR may become detrimental, thus contributing to neuroprogression. Herein, we propose that immune-inflammatory, neuro-oxidative, neuro-nitrosative, as well as mitochondrial pathways may reciprocally interact with aberrations in UPR pathways. Furthermore, ER stress may contribute to a deregulation in calcium homoeostasis. The common denominator of these pathways is a decrease in neuronal resilience, synaptic dysfunction and even cell death. This review also discusses how mechanisms related to ER stress could be explored as a source for novel therapeutic targets for neurodegenerative and neuroprogressive diseases. The design of randomised controlled trials testing compounds that target aberrant UPR-related pathways within the emerging framework of precision psychiatry is warranted

    Loss of PIM2 enhances the anti-proliferative effect of the pan-PIM kinase inhibitor AZD1208 in non-Hodgkin lymphomas

    Get PDF
    Background A promising therapeutic approach for aggressive B-cell Non-Hodgkin lymphoma (NHL), including diffuse large B-cell lymphoma (DLBCL), and Burkitt lymphoma (BL) is to target kinases involved in signal transduction and gene regulation. PIM1/2 serine/threonine kinases are highly expressed in activated B-cell-like DLBCL (ABC-DLBCL) with poor prognosis. In addition, both PIM kinases have a reported synergistic effect with c-MYC in mediating tumour development in several cancers, c-MYC gene being translocated to one of the immunoglobulin loci in nearly all BLs. Methods For these reasons, we tested the efficiency of several PIM kinase inhibitors (AZD1208, SMI4a, PIM1/2 inhibitor VI and Quercetagetin) in preventing proliferation of aggressive NHL-derived cell lines and compared their efficiency with PIM1 and/or PIM2 knockdown. Results We observed that most of the anti-proliferative potential of these inhibitors in NHL was due to an off-target effect. Interestingly, we present evidence of a kinase-independent function of PIM2 in regulating cell cycle. Moreover, combining AZD1208 treatment and PIM2 knockdown additively repressed cell proliferation. Conclusion Taken together, this study suggests that at least a part of PIM1/2 oncogenic potential could be independent of their kinase activity, justifying the limited anti-tumorigenic outcome of PIM-kinase inhibitors in NHL

    Morphing in nature and beyond: a review of natural and synthetic shape-changing materials and mechanisms

    Get PDF
    Shape-changing materials open an entirely new solution space for a wide range of disciplines: from architecture that responds to the environment and medical devices that unpack inside the body, to passive sensors and novel robotic actuators. While synthetic shape-changing materials are still in their infancy, studies of biological morphing materials have revealed key paradigms and features which underlie efficient natural shape-change. Here, we review some of these insights and how they have been, or may be, translated to artificial solutions. We focus on soft matter due to its prevalence in nature, compatibility with users and potential for novel design. Initially, we review examples of natural shape-changing materials—skeletal muscle, tendons and plant tissues—and compare with synthetic examples with similar methods of operation. Stimuli to motion are outlined in general principle, with examples of their use and potential in manufactured systems. Anisotropy is identified as a crucial element in directing shape-change to fulfil designed tasks, and some manufacturing routes to its achievement are highlighted. We conclude with potential directions for future work, including the simultaneous development of materials and manufacturing techniques and the hierarchical combination of effects at multiple length scales.</p
    corecore