243 research outputs found

    Extragalactic Radio Continuum Surveys and the Transformation of Radio Astronomy

    Full text link
    Next-generation radio surveys are about to transform radio astronomy by discovering and studying tens of millions of previously unknown radio sources. These surveys will provide new insights to understand the evolution of galaxies, measuring the evolution of the cosmic star formation rate, and rivalling traditional techniques in the measurement of fundamental cosmological parameters. By observing a new volume of observational parameter space, they are also likely to discover unexpected new phenomena. This review traces the evolution of extragalactic radio continuum surveys from the earliest days of radio astronomy to the present, and identifies the challenges that must be overcome to achieve this transformational change.Comment: To be published in Nature Astronomy 18 Sept 201

    The Spin Structure of the Nucleon

    Full text link
    We present an overview of recent experimental and theoretical advances in our understanding of the spin structure of protons and neutrons.Comment: 84 pages, 29 figure

    Inferring the joint demographic history of multiple populations from multidimensional SNP frequency data

    Get PDF
    Demographic models built from genetic data play important roles in illuminating prehistorical events and serving as null models in genome scans for selection. We introduce an inference method based on the joint frequency spectrum of genetic variants within and between populations. For candidate models we numerically compute the expected spectrum using a diffusion approximation to the one-locus two-allele Wright-Fisher process, involving up to three simultaneous populations. Our approach is a composite likelihood scheme, since linkage between neutral loci alters the variance but not the expectation of the frequency spectrum. We thus use bootstraps incorporating linkage to estimate uncertainties for parameters and significance values for hypothesis tests. Our method can also incorporate selection on single sites, predicting the joint distribution of selected alleles among populations experiencing a bevy of evolutionary forces, including expansions, contractions, migrations, and admixture. As applications, we model human expansion out of Africa and the settlement of the New World, using 5 Mb of noncoding DNA resequenced in 68 individuals from 4 populations (YRI, CHB, CEU, and MXL) by the Environmental Genome Project. We also combine our demographic model with a previously estimated distribution of selective effects among newly arising amino acid mutations to accurately predict the frequency spectrum of nonsynonymous variants across three continental populations (YRI, CHB, CEU).Comment: 17 pages, 4 figures, supporting information included with sourc

    Phosphorylation of AMPA Receptors Is Required for Sensory Deprivation-Induced Homeostatic Synaptic Plasticity

    Get PDF
    Sensory experience, and the lack thereof, can alter the function of excitatory synapses in the primary sensory cortices. Recent evidence suggests that changes in sensory experience can regulate the synaptic level of Ca2+-permeable AMPA receptors (CP-AMPARs). However, the molecular mechanisms underlying such a process have not been determined. We found that binocular visual deprivation, which is a well-established in vivo model to produce multiplicative synaptic scaling in visual cortex of juvenile rodents, is accompanied by an increase in the phosphorylation of AMPAR GluR1 (or GluA1) subunit at the serine 845 (S845) site and the appearance of CP-AMPARs at synapses. To address the role of GluR1-S845 in visual deprivation-induced homeostatic synaptic plasticity, we used mice lacking key phosphorylation sites on the GluR1 subunit. We found that mice specifically lacking the GluR1-S845 site (GluR1-S845A mutants), which is a substrate of cAMP-dependent kinase (PKA), show abnormal basal excitatory synaptic transmission and lack visual deprivation-induced homeostatic synaptic plasticity. We also found evidence that increasing GluR1-S845 phosphorylation alone is not sufficient to produce normal multiplicative synaptic scaling. Our study provides concrete evidence that a GluR1 dependent mechanism, especially S845 phosphorylation, is a necessary pre-requisite step for in vivo homeostatic synaptic plasticity

    Ecological character displacement in the face of gene flow: Evidence from two species of nightingales

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ecological character displacement is a process of phenotypic differentiation of sympatric populations caused by interspecific competition. Such differentiation could facilitate speciation by enhancing reproductive isolation between incipient species, although empirical evidence for it at early stages of divergence when gene flow still occurs between the species is relatively scarce. Here we studied patterns of morphological variation in sympatric and allopatric populations of two hybridizing species of birds, the Common Nightingale (<it>Luscinia megarhynchos</it>) and the Thrush Nightingale (<it>L. luscinia</it>).</p> <p>Results</p> <p>We conducted principal component (PC) analysis of morphological traits and found that nightingale species converged in overall body size (PC1) and diverged in relative bill size (PC3) in sympatry. Closer analysis of morphological variation along geographical gradients revealed that the convergence in body size can be attributed largely to increasing body size with increasing latitude, a phenomenon known as Bergmann's rule. In contrast, interspecific interactions contributed significantly to the observed divergence in relative bill size, even after controlling for the effects of geographical gradients. We suggest that the divergence in bill size most likely reflects segregation of feeding niches between the species in sympatry.</p> <p>Conclusions</p> <p>Our results suggest that interspecific competition for food resources can drive species divergence even in the face of ongoing hybridization. Such divergence may enhance reproductive isolation between the species and thus contribute to speciation.</p

    Hundreds of genetic barcodes of the species-rich hydroid superfamily Plumularioidea (Cnidaria, Medusozoa) provide a guide toward more reliable taxonomy

    Get PDF
    Marine hydroids are important benthic components of shallow and deep waters worldwide, but their taxonomy is controversial because diagnostic morphological characters to categorize taxa are limited. Their genetic relationships are also little investigated. We tested taxonomic hypotheses within the highly speciose superfamily Plumularioidea by integrating a classical morphological approach with DNA barcoding of the 16S and COI mitochondrial markers for 659 and 196 specimens of Plumularioidea, respectively. Adding Genbank sequences, we inferred systematic relationships among 1,114 plumularioids, corresponding to 123 nominal species and 17 novel morphospecies in five families of Plumularioidea. We found considerable inconsistencies in the systematics of nominal families, genera and species. The families Kirchenpaueriidae and Plumulariidae were polyphyletic and the Halopterididae paraphyletic. Most genera of Plumularioidea are not monophyletic. Species diversity is considerably underestimated. Within our study, at least 10% of the morphologically-distinctive morphospecies are undescribed, and about 40% of the overall species richness is represented by cryptic species. Convergent evolution and morphological plasticity therefore blur systematic relationships. Additionally, cryptic taxa occur frequently in sympatry or parapatry, complicating correspondence with type material of described species. Sometimes conspecificity of different morphotypes was found. The taxonomy of hydroids requires continued comprehensive revision.This work relied on several hydrozoan samples collected from various sites, with the aid of many people. Supplementary Table S1 refers many of the people involved in the collection and/or preservation of the samples. C.J.M. acknowledges his great buddy-divers Jaime N.-Ruiz (CIMAR, Univ. Costa Rica), Axel Calderon, Nathaniel Chu, Eleni Petrou (STRI, Smiths. Inst.), Hanae Spathias, Karen Koltes (at the Belize station, Smith. Inst.), Freya Sommer (Hopkins Marine Station), Remilson Ferreira ('Costa Norte', Sao Tome), Frederico Cardigos (DOP, Univ. Azores) and others that assisted the dives. C.J.M. also acknowledges Rita Castillo (CIMAR, Univ. Costa Rica), Plinio Gondola, Ligia Calderon, Laura Geyer, Maria Castillo (STRI, Smiths. Inst.), Gregory Ruiz (SERC, Smiths. Inst.), Paul Greenhall, William Keel (MSC, Smith. Inst.), Manuel Enes, Valentina Matos (IMAR/DOP, Univ. Azores), Filipe Porteiro, Joao Goncalves (OKEANOS/IMAR, Univ. Azores), Marina Cunha, Ascensao Ravara (CESAM, Univ. Aveiro), Shirley Pomponi (Harbor Branch, Florida Atlantic Univ.), Estrela Matilde (Fundacao Principe Trust), Monica Albuquerque, Ines Tojeira (EMEPC), Diana Carvalho (Nat. Mus. Nat. Hist., Lisbon) and many others colleagues that facilitated the morphologic classifications and deposition of the samples. Peter Schuchert (Mus. d'Hist. Nat. Geneve) kindly provided some DNA extractes. Todd Kincaid and his team of GUE divers (Project Baseline - Azores) collected valuable samples from unusual depths. Joana Boavida (CIIMAR, Univ. Algarve) facilitated some samples of the 'DeepReefs' project. Jim Drewery (Marine Scotland Science Inst.) also provided few samples. Dale Calder (Royal Ontario Museum) provided some bibliography to C.J.M. and discussed/resolved some dubios taxonomic classifications. Colleagues at the L.A.B. (NMNH, Smith. Inst.) were very supportive. The APC fees for open access publication were supported by a program of the Regional Government of the Azores ("Apoio ao funcionamento e gestao dos centros de I&D regionais: 2018 - DRCT-medida 1

    BKV Agnoprotein Interacts with α-Soluble N-Ethylmaleimide-Sensitive Fusion Attachment Protein, and Negatively Influences Transport of VSVG-EGFP

    Get PDF
    Background: The human polyomavirus BK (BKV) infects humans worldwide and establishes a persistent infection in the kidney. The BK virus genome encodes three regulatory proteins, large and small tumor-antigen and the agnoprotein, as well as the capsid proteins VP1 to VP3. Agnoprotein is conserved among BKV, JC virus (JCV) and SV40, and agnoprotein-deficient mutants reveal reduced viral propagation. Studies with JCV and SV40 indicate that their agnoproteins may be involved in transcription, replication and/or nuclear and cellular release of the virus. However, the exact function(s) of agnoprotein of BK virus remains elusive. Principal Findings: As a strategy of exploring the functions of BKV agnoprotein, we decided to look for cellular interaction partners for the viral protein. Several partners were identified by yeast two-hybrid assay, among them a-SNAP which is involved in disassembly of vesicles during secretion. BKV agnoprotein and a-SNAP were found to partially co-localize in cells, and a complex consisting of agnoprotein and a-SNAP could be co-immunoprecipitated from cells ectopically expressing the proteins as well as from BKV-transfected cells. The N-terminal part of the agnoprotein was sufficient for the interaction with a-SNAP. Finally, we could show that BKV agnoprotein negatively interferes with secretion of VSVG-EGFP reporter suggesting that agnoprotein may modulate exocytosis. Conclusions: We have identified the first cellular interaction partner for BKV agnoprotein. The most N-terminal part of BKV agnoprotein is involved in the interaction with a-SNAP. Presence of BKV agnoprotein negatively interferes with secretion of VSVG-EGFP reporter

    Multimodal Chemosensory Integration through the Maxillary Palp in Drosophila

    Get PDF
    Drosophila melanogaster has an olfactory organ called the maxillary palp. It is smaller and numerically simpler than the antenna, and its specific role in behavior has long been unclear. Because of its proximity to the mouthparts, I explored the possibility of a role in taste behavior. Maxillary palp was tuned to mediate odor-induced taste enhancement: a sucrose solution was more appealing when simultaneously presented with the odorant 4-methylphenol. The same result was observed with other odors that stimulate other types of olfactory receptor neuron in the maxillary palp. When an antennal olfactory receptor was genetically introduced in the maxillary palp, the fly interpreted a new odor as a sweet-enhancing smell. These results all point to taste enhancement as a function of the maxillary palp. It also opens the door for studying integration of multiple senses in a model organism
    corecore