1,189 research outputs found

    Connectionist perspectives on language learning, representation and processing.

    Get PDF
    The field of formal linguistics was founded on the premise that language is mentally represented as a deterministic symbolic grammar. While this approach has captured many important characteristics of the world\u27s languages, it has also led to a tendency to focus theoretical questions on the correct formalization of grammatical rules while also de-emphasizing the role of learning and statistics in language development and processing. In this review we present a different approach to language research that has emerged from the parallel distributed processing or \u27connectionist\u27 enterprise. In the connectionist framework, mental operations are studied by simulating learning and processing within networks of artificial neurons. With that in mind, we discuss recent progress in connectionist models of auditory word recognition, reading, morphology, and syntactic processing. We argue that connectionist models can capture many important characteristics of how language is learned, represented, and processed, as well as providing new insights about the source of these behavioral patterns. Just as importantly, the networks naturally capture irregular (non-rule-like) patterns that are common within languages, something that has been difficult to reconcile with rule-based accounts of language without positing separate mechanisms for rules and exceptions

    Three Dimensional Electrical Impedance Tomography

    Get PDF
    The electrical resistivity of mammalian tissues varies widely and is correlated with physiological function. Electrical impedance tomography (EIT) can be used to probe such variations in vivo, and offers a non-invasive means of imaging the internal conductivity distribution of the human body. But the computational complexity of EIT has severe practical limitations, and previous work has been restricted to considering image reconstruction as an essentially two-dimensional problem. This simplification can limit significantly the imaging capabilities of EIT, as the electric currents used to determine the conductivity variations will not in general be confined to a two-dimensional plane. A few studies have attempted three-dimensional EIT image reconstruction, but have not yet succeeded in generating images of a quality suitable for clinical applications. Here we report the development of a three-dimensional EIT system with greatly improved imaging capabilities, which combines our 64-electrode data-collection apparatus with customized matrix inversion techniques. Our results demonstrate the practical potential of EIT for clinical applications, such as lung or brain imaging and diagnostic screening

    Challenges in monitoring and managing engineered slopes in a changing climate

    Get PDF
    Geotechnical asset owners need to know which parts of their asset network are vulnerable to climate change induced failure in order to optimise future investment. Protecting these vulnerable slopes requires monitoring systems capable of identifying and alerting to asset operators changes in the internal conditions that precede failure. Current monitoring systems are heavily reliant on point sensors which can be difficult to interpret across slope scale. This paper presents challenges to producing such a system and research being carried out to address some of these using electrical resistance tomography (ERT). Experimental results show that whilst it is possible to measure soil water content indirectly via resistivity the relationship between resistivity and water content will change over time for a given slope. If geotechnical parameters such as pore water pressure are to be estimated using this method then ERT systems will require integrating with more conventional geotechnical instrumentation to ensure correct representative information is provided. The paper also presents examples of how such data can be processed and communicated to asset owners for the purposes of asset management

    Atomistic study of the long-lived quantum coherences in the Fenna-Matthews-Olson complex

    Get PDF
    A remarkable amount of theoretical research has been carried out to elucidate the physical origins of the recently observed long-lived quantum coherence in the electronic energy transfer process in biological photosynthetic systems. Although successful in many respects, several widely used descriptions only include an effective treatment of the protein-chromophore interactions. In this work, by combining an all-atom molecular dynamics simulation, time-dependent density functional theory, and open quantum system approaches, we successfully simulate the dynamics of the electronic energy transfer of the Fenna-Matthews-Olson pigment-protein complex. The resulting characteristic beating of populations and quantum coherences is in good agreement with the experimental results and the hierarchy equation of motion approach. The experimental absorption, linear and circular dichroism spectra and dephasing rates are recovered at two different temperatures. In addition, we provide an extension of our method to include zero-point fluctuations of the vibrational environment. This work thus presents one of the first steps to explain the role of excitonic quantum coherence in photosynthetic light-harvesting complexes based on their atomistic and molecular description.Comment: 24 pages, 6 figure

    Yukawa couplings and masses of non-chiral states for the Standard Model on D6-branes on T6/Z6'

    Full text link
    The perturbative leading order open string three-point couplings for the Standard Model with hidden USp(6) on fractional D6-branes on T6/Z6' from arXiv:0806.3039 [hep-th], arXiv:0910.0843 [hep-th] are computed. Physical Yukawa couplings consisting of holomorphic Wilsonian superpotential terms times a non-holomorphic prefactor involving the corresponding classical open string Kaehler metrics are given, and mass terms for all non-chiral matter states are derived. The lepton Yukawa interactions are at leading order flavour diagonal, while the quark sector displays a more intricate pattern of mixings. While N=2 supersymmetric sectors acquire masses via only two D6-brane displacements - which also provide the hierarchies between up- and down-type Yukawas within one quark or lepton generation -, the remaining vector-like states receive masses via perturbative three-point couplings to some Standard Model singlet fields with vevs along flat directions. Couplings to the hidden sector and messengers for supersymmetry breaking are briefly discussed.Comment: 52 pages (including 8p. appendix); 5 figures; 14 tables; v2: discussion in section 4.1.3 extended, footnote 5 added, typos corrected, accepted by JHE

    Chinese translation norms for 1429 English words

    Get PDF
    We present Chinese translation norms for 1429 English words. Chinese-English bilinguals (N=28) were asked to provide the first Chinese translation that came to mind for 1429 English words. The results revealed that 71% of the English words received more than one correct translation indicating the large amount of translation ambiguity when translating from English to Chinese. The relationship between translation ambiguity and word frequency, concreteness and language proficiency was investigated. Although the significant correlations were not strong, results revealed that English word frequency was positively correlated with the number of alternative translations, whereas English word concreteness was negatively correlated with the number of translations. Importantly, regression analyses showed that the number of Chinese translations was predicted by word frequency and concreteness. Furthermore, an interaction between these predictors revealed that the number of translations was more affected by word frequency for more concrete words than for less concrete words. In addition, mixed-effects modelling showed that word frequency, concreteness and English language proficiency were all significant predictors of whether or not a dominant translation was provided. Finally, correlations between the word frequencies of English words and their Chinese dominant translations were higher for translation-unambiguous pairs than for translation-ambiguous pairs. The translation norms are made available in a database together with lexical information about the words, which will be a useful resource for researchers investigating Chinese-English bilingual language processing

    Oral symptoms and functional outcome related to oral and oropharyngeal cancer

    Get PDF
    Purpose This study aimed to assess: (1) oral symptoms of patients treated for oral or oropharyngeal cancer; (2) how patients rank the burden of oral symptoms; (3) the impact of the tumor, the treatment, and oral symptoms on functional outcome. Methods Eighty-nine patients treated for oral or oropharyngeal cancer were asked about their oral symptoms related to mouth opening, dental status, oral sensory function, tongue mobility, salivary function, and pain. They were asked to rank these oral symptoms according to the degree of burden experienced. The Mandibular Function Impairment Questionnaire (MFIQ) was used to assess functional outcome. In a multivariate linear regression analyses, variables related to MFIQ scores (p a parts per thousand currency signaEuro parts per thousand 0.10) were entered as predictors with MFIQ score as the outcome. Results Lack of saliva (52%), restricted mouth opening (48%), and restricted tongue mobility (46%) were the most frequently reported oral symptoms. Lack of saliva was most frequently (32%) ranked as the most burdensome oral symptom. For radiated patients, an inability to wear a dental prosthesis, a T3 or T4 stage, and a higher age were predictive of MFIQ scores. For non-radiated patients, a restricted mouth opening, an inability to wear a dental prosthesis, restricted tongue mobility, and surgery of the mandible were predictive of MFIQ scores. Conclusions Lack of saliva was not only the most frequently reported oral symptom after treatment for oral or oropharyngeal cancer, but also the most burdensome. Functional outcome is strongly influenced by an inability to wear a dental prosthesis in both radiated and non-radiated patients

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    Formation of Supermassive Black Holes

    Full text link
    Evidence shows that massive black holes reside in most local galaxies. Studies have also established a number of relations between the MBH mass and properties of the host galaxy such as bulge mass and velocity dispersion. These results suggest that central MBHs, while much less massive than the host (~ 0.1%), are linked to the evolution of galactic structure. In hierarchical cosmologies, a single big galaxy today can be traced back to the stage when it was split up in hundreds of smaller components. Did MBH seeds form with the same efficiency in small proto-galaxies, or did their formation had to await the buildup of substantial galaxies with deeper potential wells? I briefly review here some of the physical processes that are conducive to the evolution of the massive black hole population. I will discuss black hole formation processes for `seed' black holes that are likely to place at early cosmic epochs, and possible observational tests of these scenarios.Comment: To appear in The Astronomy and Astrophysics Review. The final publication is available at http://www.springerlink.co

    Prediction and Topological Models in Neuroscience

    Get PDF
    In the last two decades, philosophy of neuroscience has predominantly focused on explanation. Indeed, it has been argued that mechanistic models are the standards of explanatory success in neuroscience over, among other things, topological models. However, explanatory power is only one virtue of a scientific model. Another is its predictive power. Unfortunately, the notion of prediction has received comparatively little attention in the philosophy of neuroscience, in part because predictions seem disconnected from interventions. In contrast, we argue that topological predictions can and do guide interventions in science, both inside and outside of neuroscience. Topological models allow researchers to predict many phenomena, including diseases, treatment outcomes, aging, and cognition, among others. Moreover, we argue that these predictions also offer strategies for useful interventions. Topology-based predictions play this role regardless of whether they do or can receive a mechanistic interpretation. We conclude by making a case for philosophers to focus on prediction in neuroscience in addition to explanation alone
    • 

    corecore