28 research outputs found

    Virtual brain simulations reveal network-specific parameters in neurodegenerative dementias

    Get PDF
    INTRODUCTION: Neural circuit alterations lay at the core of brain physiopathology, and yet are hard to unveil in living subjects. The Virtual Brain (TVB) modeling, by exploiting structural and functional magnetic resonance imaging (MRI), yields mesoscopic parameters of connectivity and synaptic transmission. METHODS: We used TVB to simulate brain networks, which are key for human brain function, in Alzheimer's disease (AD) and frontotemporal dementia (FTD) patients, whose connectivity and synaptic parameters remain largely unknown; we then compared them to healthy controls, to reveal novel in vivo pathological hallmarks. RESULTS: The pattern of simulated parameter differed between AD and FTD, shedding light on disease-specific alterations in brain networks. Individual subjects displayed subtle differences in network parameter patterns that significantly correlated with their individual neuropsychological, clinical, and pharmacological profiles. DISCUSSION: These TVB simulations, by informing about a new personalized set of networks parameters, open new perspectives for understanding dementias mechanisms and design personalized therapeutic approaches

    Replication and Recombination Factors Contributing to Recombination-Dependent Bypass of DNA Lesions by Template Switch

    Get PDF
    Damage tolerance mechanisms mediating damage-bypass and gap-filling are crucial for genome integrity. A major damage tolerance pathway involves recombination and is referred to as template switch. Template switch intermediates were visualized by 2D gel electrophoresis in the proximity of replication forks as X-shaped structures involving sister chromatid junctions. The homologous recombination factor Rad51 is required for the formation/stabilization of these intermediates, but its mode of action remains to be investigated. By using a combination of genetic and physical approaches, we show that the homologous recombination factors Rad55 and Rad57, but not Rad59, are required for the formation of template switch intermediates. The replication-proficient but recombination-defective rfa1-t11 mutant is normal in triggering a checkpoint response following DNA damage but is impaired in X-structure formation. The Exo1 nuclease also has stimulatory roles in this process. The checkpoint kinase, Rad53, is required for X-molecule formation and phosphorylates Rad55 robustly in response to DNA damage. Although Rad55 phosphorylation is thought to activate recombinational repair under conditions of genotoxic stress, we find that Rad55 phosphomutants do not affect the efficiency of X-molecule formation. We also examined the DNA polymerase implicated in the DNA synthesis step of template switch. Deficiencies in translesion synthesis polymerases do not affect X-molecule formation, whereas DNA polymerase δ, required also for bulk DNA synthesis, plays an important role. Our data indicate that a subset of homologous recombination factors, together with DNA polymerase δ, promote the formation of template switch intermediates that are then preferentially dissolved by the action of the Sgs1 helicase in association with the Top3 topoisomerase rather than resolved by Holliday Junction nucleases. Our results allow us to propose the choreography through which different players contribute to template switch in response to DNA damage and to distinguish this process from other recombination-mediated processes promoting DNA repair

    Rescue of replication failure by Fanconi anaemia proteins

    Get PDF
    Chromosomal aberrations are often associated with incomplete genome duplication, for instance at common fragile sites, or as a consequence of chemical alterations in the DNA template that block replication forks. Studies of the cancer-prone disease Fanconi anaemia (FA) have provided important insights into the resolution of replication problems. The repair of interstrand DNA crosslinks induced by chemotherapy drugs is coupled with DNA replication and controlled by FA proteins. We discuss here the recent discovery of new FA-associated proteins and the development of new tractable repair systems that have dramatically improved our understanding of crosslink repair. We focus also on how FA proteins protect against replication failure in the context of fragile sites and on the identification of reactive metabolites that account for the development of Fanconi anaemia symptoms

    Search for production of an invisible dark photon in π0 decays

    Get PDF
    The results of a search for π0 decays to a photon and an invisible massive dark photon at the NA62 experiment at the CERN SPS are reported. From a total of 4.12 x 10^8 tagged π0 mesons, no signal is observed. Assuming a kinetic-mixing interaction, limits are set on the dark photon coupling to the ordinary photon as a function of the dark photon mass, improving on previous searches in the mass range 60-110 MeV/c^2. The present results are interpreted in terms of an upper limit of the branching ratio of the electro-weak decay π0→γνν¯, improving the current limit by more than three orders of magnitude

    An investigation of the very rare K+ → π+ vv¯ decay

    Get PDF
    The NA62 experiment reports an investigation of the K+→π+ν ̄ν mode from a sample of K+ decays collected in 2017 at the CERN SPS. The experiment has achieved a single event sensitivity of (0.389±0.024)×10−10, corresponding to 2.2 events assuming the Standard Model branching ratio of (8.4±1.0)×10−11. Two signal candidates are observed with an expected background of 1.5 events. Combined with the result of a similar analysis conducted by NA62 on a smaller data set recorded in 2016, the collaboration now reports an upper limit of 1.78×10−10 for the K+→π+ν ̄ν branching ratio at 90% CL. This, together with the corresponding 68% CL measurement of (0.48+0.72−0.48)×10−10, are currently the most precise results worldwide, and are able to constrain some New Physics models that predict large enhancements still allowed by previous measurements

    Search for K+ decays to a muon and invisible particles

    Get PDF
    The NA62 experiment at CERN reports searches for K+ → μ+N and K+ → μ+νX decays, where N and X are massive invisible particles, using the 2016–2018 data set. The N particle is assumed to be a heavy neutral lepton, and the results are expressed as upper limits of O(10−8) of the neutrino mixing parameter |Uμ4|2 for N masses in the range 200–384 MeV/c2 and lifetime exceeding 50 ns. The X particle is considered a scalar or vector hidden sector mediator decaying to an invisible final state, and upper limits of the decay branching fraction for X masses in the range 10–370 MeV/c2 are reported for the first time, ranging from O(10−5) to O(10−7). An improved upper limit of 1.0×10−6 is established at 90% CL on the K+ → μ+ννν¯ branching fraction
    corecore