127 research outputs found

    A Novel Small Molecule Inhibitor of Influenza A Viruses that Targets Polymerase Function and Indirectly Induces Interferon

    Get PDF
    Influenza viruses continue to pose a major public health threat worldwide and options for antiviral therapy are limited by the emergence of drug-resistant virus strains. The antiviral cytokine, interferon (IFN) is an essential mediator of the innate immune response and influenza viruses, like many viruses, have evolved strategies to evade this response, resulting in increased replication and enhanced pathogenicity. A cell-based assay that monitors IFN production was developed and applied in a high-throughput compound screen to identify molecules that restore the IFN response to influenza virus infected cells. We report the identification of compound ASN2, which induces IFN only in the presence of influenza virus infection. ASN2 preferentially inhibits the growth of influenza A viruses, including the 1918 H1N1, 1968 H3N2 and 2009 H1N1 pandemic strains and avian H5N1 virus. In vivo, ASN2 partially protects mice challenged with a lethal dose of influenza A virus. Surprisingly, we found that the antiviral activity of ASN2 is not dependent on IFN production and signaling. Rather, its IFN-inducing property appears to be an indirect effect resulting from ASN2-mediated inhibition of viral polymerase function, and subsequent loss of the expression of the viral IFN antagonist, NS1. Moreover, we identified a single amino acid mutation at position 499 of the influenza virus PB1 protein that confers resistance to ASN2, suggesting that PB1 is the direct target. This two-pronged antiviral mechanism, consisting of direct inhibition of virus replication and simultaneous activation of the host innate immune response, is a unique property not previously described for any single antiviral molecule

    Cytogenetical studies in five Atlantic Anguilliformes fishes

    Get PDF
    The order Anguilliformes comprises 15 families, 141 genera and 791 fish species. Eight families had at least one karyotyped species, with a prevalence of 2n = 38 chromosomes and high fundamental numbers (FN). The only exception to this pattern is the family Muraenidae, in which the eight species analyzed presented 2n = 42 chromosomes. Despite of the large number of Anguilliformes species, karyotypic reports are available for only a few representatives. In the present work, a species of Ophichthidae, Myrichthys ocellatus (2n = 38; 8m+14sm+10st+6a; FN = 70) and four species of Muraenidae, Enchelycore nigricans (2n = 42; 6m+8sm+12st+16a; FN = 68), Gymnothorax miliaris (2n = 42; 14m+18sm+10st; FN = 84), G. vicinus (2n = 42; 8m+6sm+28a; FN = 56) and Muraena pavonina (2n = 42; 6m+4sm+32a; FN = 52), collected along the Northeastern coast of Brazil and around the St Peter and St Paul Archipelago were analyzed. Typical large metacentric chromosomes were observed in all species. Conspicuous polymorphic heterochromatic regions were observed at the centromeres of most chromosomes and at single ribosomal sites. The data obtained for Ophichthidae corroborate the hypothesis of a karyotypic diversification mainly due to pericentric inversions and Robertsonian rearrangements, while the identification of constant chromosome numbers in Muraenidae (2n = 42) suggests a karyotype diversification through pericentric inversions and heterochromatin processes

    Autophagy and Apoptosis Have a Role in the Survival or Death of Stallion Spermatozoa during Conservation in Refrigeration

    Get PDF
    Apoptosis has been recognized as a cause of sperm death during cryopreservation and a cause of infertility in humans, however there is no data on its role in sperm death during conservation in refrigeration; autophagy has not been described to date in mature sperm. We investigated the role of apoptosis and autophagy during cooled storage of stallion spermatozoa. Samples from seven stallions were split; half of the ejaculate was processed by single layer centrifugation, while the other half was extended unprocessed, and stored at 5°C for five days. During the time of storage, sperm motility (CASA, daily) and membrane integrity (flow cytometry, daily) were evaluated. Apoptosis was evaluated on days 1, 3 and 5 (active caspase 3, increase in membrane permeability, phosphatidylserine translocation and mitochondrial membrane potential) using flow cytometry. Furthermore, LC3B processing was investigated by western blotting at the beginning and at the end of the period of storage. The decrease in sperm quality over the period of storage was to a large extent due to apoptosis; single layer centrifugation selected non-apoptotic spermatozoa, but there were no differences in sperm motility between selected and unselected sperm. A high percentage of spermatozoa showed active caspase 3 upon ejaculation, and during the period of storage there was an increase of apoptotic spermatozoa but no changes in the percentage of live sperm, revealed by the SYBR-14/PI assay, were observed. LC3B was differentially processed in sperm after single layer centrifugation compared with native sperm. In processed sperm more LC3B-II was present than in non-processed samples; furthermore, in non-processed sperm there was an increase in LC3B-II after five days of cooled storage. These results indicate that apoptosis plays a major role in the sperm death during storage in refrigeration and that autophagy plays a role in the survival of spermatozoa representing a new pro-survival mechanism in spermatozoa not previously described

    A genomic catalog of Earth’s microbiomes

    Get PDF
    The reconstruction of bacterial and archaeal genomes from shotgun metagenomes has enabled insights into the ecology and evolution of environmental and host-associated microbiomes. Here we applied this approach to >10,000 metagenomes collected from diverse habitats covering all of Earth’s continents and oceans, including metagenomes from human and animal hosts, engineered environments, and natural and agricultural soils, to capture extant microbial, metabolic and functional potential. This comprehensive catalog includes 52,515 metagenome-assembled genomes representing 12,556 novel candidate species-level operational taxonomic units spanning 135 phyla. The catalog expands the known phylogenetic diversity of bacteria and archaea by 44% and is broadly available for streamlined comparative analyses, interactive exploration, metabolic modeling and bulk download. We demonstrate the utility of this collection for understanding secondary-metabolite biosynthetic potential and for resolving thousands of new host linkages to uncultivated viruses. This resource underscores the value of genome-centric approaches for revealing genomic properties of uncultivated microorganisms that affect ecosystem processes

    Gene expression profiling of monkeypox virus-infected cells reveals novel interfaces for host-virus interactions

    Get PDF
    Monkeypox virus (MPV) is a zoonotic Orthopoxvirus and a potential biothreat agent that causes human disease with varying morbidity and mortality. Members of the Orthopoxvirus genus have been shown to suppress antiviral cell defenses, exploit host cell machinery, and delay infection-induced cell death. However, a comprehensive study of all host genes and virus-targeted host networks during infection is lacking. To better understand viral strategies adopted in manipulating routine host biology on global scale, we investigated the effect of MPV infection on Macaca mulatta kidney epithelial cells (MK2) using GeneChip rhesus macaque genome microarrays. Functional analysis of genes differentially expressed at 3 and 7 hours post infection showed distinctive regulation of canonical pathways and networks. While the majority of modulated histone-encoding genes exhibited sharp copy number increases, many of its transcription regulators were substantially suppressed; suggesting involvement of unknown viral factors in host histone expression. In agreement with known viral dependence on actin in motility, egress, and infection of adjacent cells, our results showed extensive regulation of genes usually involved in controlling actin expression dynamics. Similarly, a substantial ratio of genes contributing to cell cycle checkpoints exhibited concerted regulation that favors cell cycle progression in G1, S, G2 phases, but arrest cells in G2 phase and inhibits entry into mitosis. Moreover, the data showed that large number of infection-regulated genes is involved in molecular mechanisms characteristic of cancer canonical pathways. Interestingly, ten ion channels and transporters showed progressive suppression during the course of infection. Although the outcome of this unusual channel expression on cell osmotic homeostasis remains unknown, instability of cell osmotic balance and membrane potential has been implicated in intracellular pathogens egress. Our results highlight the role of histones, actin, cell cycle regulators, and ion channels in MPV infection, and propose these host functions as attractive research focal points in identifying novel drug intervention sites

    Prospect of vasoactive intestinal peptide therapy for COPD/PAH and asthma: a review

    Get PDF
    There is mounting evidence that pulmonary arterial hypertension (PAH), asthma and chronic obstructive pulmonary disease (COPD) share important pathological features, including inflammation, smooth muscle contraction and remodeling. No existing drug provides the combined potential advantages of reducing vascular- and bronchial-constriction, and anti-inflammation. Vasoactive intestinal peptide (VIP) is widely expressed throughout the cardiopulmonary system and exerts a variety of biological actions, including potent vascular and airway dilatory actions, potent anti-inflammatory actions, improving blood circulation to the heart and lung, and modulation of airway secretions. VIP has emerged as a promising drug candidate for the treatment of cardiopulmonary disorders such as PAH, asthma, and COPD. Clinical application of VIP has been limited in the past for a number of reasons, including its short plasma half-life and difficulty in administration routes. The development of long-acting VIP analogues, in combination with appropriate drug delivery systems, may provide clinically useful agents for the treatment of PAH, asthma, and COPD. This article reviews the physiological significance of VIP in cardiopulmonary system and the therapeutic potential of VIP-based agents in the treatment of pulmonary diseases
    • 

    corecore