1,697 research outputs found

    Choose where you live carefully: built environment differences in children’s cardiorespiratory fitness and cardiometabolic risk

    Get PDF
    © 2021 The Authors. Published by MDPI. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.3390/sports9020031Information regarding urban-rural differences in health indicators are scarce in Brazil. This study sought to identify rural-urban differences in cardiorespiratory fitness (CRF) and car-diometabolic risk (CMR) in Brazilian children and adolescents whilst controlling for the important confounding variables including social economic status (SES). This is a cross-sectional study developed with children and adolescents (n = 2250, age 11.54 ± 2.76) selected from a city in the south of Brazil. CRF was estimated using a 6-minute run/walk test. CMR scores were calculated by summing different cardiometabolic risk indicators. CRF was analysed assuming a multiplicative model with allometric body-size components. CMR differences in residential locations was assessed using Analysis of caovariance (ANCOVA) adopting SES, Body Mass Index (BMI), waist circumference (WC), age and fitness as covariates. Results indicated a main effect of location (p< 0.001) with children living a rural environment having the highest CRF, and children living in the periphery of towns having the lowest. Analysis also revealed significant main effects of location (p< 0.001) with children living a rural environment having the lowest CMR and children living in the centre of towns having the highest. Therefore, Brazilian children living in a rural environment appear to have superior health benefits.Published versio

    Iterative orthology prediction uncovers new mitochondrial proteins and identifies C12orf62 as the human ortholog of COX14, a protein involved in the assembly of cytochrome c oxidase

    Get PDF
    BACKGROUND: Orthology is a central tenet of comparative genomics and ortholog identification is instrumental to protein function prediction. Major advances have been made to determine orthology relations among a set of homologous proteins. However, they depend on the comparison of individual sequences and do not take into account divergent orthologs. RESULTS: We have developed an iterative orthology prediction method, Ortho-Profile, that uses reciprocal best hits at the level of sequence profiles to infer orthology. It increases ortholog detection by 20% compared to sequence-to-sequence comparisons. Ortho-Profile predicts 598 human orthologs of mitochondrial proteins from Saccharomyces cerevisiae and Schizosaccharomyces pombe with 94% accuracy. Of these, 181 were not known to localize to mitochondria in mammals. Among the predictions of the Ortho-Profile method are 11 human cytochrome c oxidase (COX) assembly proteins that are implicated in mitochondrial function and disease. Their co-expression patterns, experimentally verified subcellular localization, and co-purification with human COX-associated proteins support these predictions. For the human gene C12orf62, the ortholog of S. cerevisiae COX14, we specifically confirm its role in negative regulation of the translation of cytochrome c oxidase. CONCLUSIONS: Divergent homologs can often only be detected by comparing sequence profiles and profile-based hidden Markov models. The Ortho-Profile method takes advantage of these techniques in the quest for orthologs

    Escargot controls somatic stem cell maintenance through the attenuation of the insulin receptor pathway in Drosophila

    Get PDF
    Adult stem cells coordinate intrinsic and extrinsic, local and systemic, cues to maintain the proper balance between self-renewal and differentiation. However, the precise mechanisms stem cells use to integrate these signals remain elusive. Here, we show that Escargot (Esg), a member of the Snail family of transcription factors, regulates the maintenance of somatic cyst stem cells (CySCs) in the Drosophila testis by attenuating the activity of the pro-differentiation insulin receptor (InR) pathway. Esg positively regulates the expression of an antagonist of insulin signaling, ImpL2, while also attenuating the expression of InR. Furthermore, Esg-mediated repression of the InR pathway is required to suppress CySC loss in response to starvation. Given the conservation of Snail-family transcription factors, characterizing the mechanisms by which Esg regulates cell-fate decisions during homeostasis and a decline in nutrient availability is likely to provide insight into the metabolic regulation of stem cell behavior in other tissues and organisms

    Hepatic STAT1-Nuclear Translocation and Interleukin 28B Polymorphisms Predict Treatment Outcomes in Hepatitis C Virus Genotype 1-Infected Patients

    Get PDF
    We investigated associations between signal transducer and activator of transcription (STAT) 1 in pretreated liver tissues, interleukin (IL) 28B polymorphism and treatment response in hepatitis C virus (HCV)-infected patients treated with peginterferon and ribavirin.We performed immunostaining analysis of STAT1 in liver tissues and determined IL28B polymorphism at rs8099917. We then compared the results with treatment outcomes in HCV genotype 1 patients with high viral load who were receiving peginterferon plus ribavirin. In univariate analysis, younger age, white blood cell counts, virological responder, early virological responder (EVR), mild activity (A1) of liver inflammation grading, and lower STAT1 nuclear-stain of hepatocytes in zone 1, zone 2 and total zones of liver were associated with sustained virological responder (SVR). Multivariate analysis showed that EVR, age and hepatic STAT1 nuclear-stain in zone 2 of liver were independent predictors of SVR. It was also revealed that IL28B and STAT1-nuclear translocation in hepatocytes are independent predictors of response to treatment with peginterferon and ribavirin in chronic hepatitis C patients.Concomitant assessment of lower STAT1 nuclear-stain of hepatocytes and IL28B polymorphism is useful for prediction of SVR in HCV genotype 1 patients

    Rheumatoid synovial fluid interleukin-17-producing CD4 T cells have abundant tumor necrosis factor-alpha co-expression, but little interleukin-22 and interleukin-23R expression

    Get PDF
    Introduction\ud Th17 cells have been implicated in the pathogenesis of rheumatoid arthritis (RA). The aim of this study was to systematically analyse the phenotype, cytokine profile and frequency of interleukin-17 (IL-17) producing CD4-positive T cells in mononuclear cells isolated from peripheral blood, synovial fluid and synovial tissue of RA patients with established disease, and to correlate cell frequencies with disease activity. \ud \ud Methods\ud Flow cytometry was used to analyse the phenotype and cytokine production of mononuclear cells isolated from peripheral blood (PBMC) (n = 44), synovial fluid (SFMC) (n = 14) and synovium (SVMC) (n = 10) of RA patients and PBMC of healthy controls (n = 13). \ud \ud Results\ud The frequency of IL-17-producing CD4 T cells was elevated in RA SFMC compared with RA PBMC (P = 0.04). However, the frequency of this population in RA SVMC was comparable to that in paired RA PBMC. The percentage of IL-17-producing CD4 T cells coexpressing tumor necrosis factor alpha (TNFα) was significantly increased in SFMC (P = 0.0068). The frequency of IFNγ-producing CD4 T cells was also significantly higher in SFMC than paired PBMC (P = 0.042). The majority of IL-17-producing CD4 T cells coexpressed IFNγ. IL-17-producing CD4 T cells in RA PBMC and SFMC exhibited very little IL-22 or IL-23R coexpression. \ud \ud Conclusions\ud These findings demonstrate a modest enrichment of IL-17-producing CD4 T cells in RA SFMC compared to PBMC. Th17 cells in SFMC produce more TNFα than their PBMC counterparts, but are not a significant source of IL-22 and do not express IL-23R. However, the percentage of CD4 T cells which produce IL-17 in the rheumatoid joint is low, suggesting that other cells may be alternative sources of IL-17 within the joints of RA patients. \ud \u

    The Rewiring of Ubiquitination Targets in a Pathogenic Yeast Promotes Metabolic Flexibility, Host Colonization and Virulence

    Get PDF
    Funding: This work was funded by the European Research Council [http://erc.europa.eu/], AJPB (STRIFE Advanced Grant; C-2009-AdG-249793). The work was also supported by: the Wellcome Trust [www.wellcome.ac.uk], AJPB (080088, 097377); the UK Biotechnology and Biological Research Council [www.bbsrc.ac.uk], AJPB (BB/F00513X/1, BB/K017365/1); the CNPq-Brazil [http://cnpq.br], GMA (Science without Borders fellowship 202976/2014-9); and the National Centre for the Replacement, Refinement and Reduction of Animals in Research [www.nc3rs.org.uk], DMM (NC/K000306/1). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Acknowledgments We thank Dr. Elizabeth Johnson (Mycology Reference Laboratory, Bristol) for providing strains, and the Aberdeen Proteomics facility for the biotyping of S. cerevisiae clinical isolates, and to Euroscarf for providing S. cerevisiae strains and plasmids. We are grateful to our Microscopy Facility in the Institute of Medical Sciences for their expert help with the electron microscopy, and to our friends in the Aberdeen Fungal Group for insightful discussions.Peer reviewedPublisher PD

    Pathologic response with neoadjuvant chemotherapy and stereotactic body radiotherapy for borderline resectable and locally-advanced pancreatic cancer

    Get PDF
    Background: Neoadjuvant stereotactic body radiotherapy (SBRT) has potential applicability in the management of borderline resectable and locally-advanced pancreatic adenocarcinoma. In this series, we report the pathologic outcomes in the subset of patients who underwent surgery after neoadjuvant SBRT. Methods: Patients with borderline resectable or locally-advanced pancreatic adenocarcinoma who were treated with SBRT followed by resection were included. Chemotherapy was to the discretion of the medical oncologist and preceded SBRT for most patients. Results: Twelve patients met inclusion criteria. Most (92%) received neoadjuvant chemotherapy, and gemcitabine/capecitabine was most frequently utilized (n = 7). Most were treated with fractionated SBRT to 36 Gy/3 fractions (n = 7) and the remainder with single fraction to 24 Gy (n = 5). No grade 3+ acute toxicities attributable to SBRT were found. Two patients developed post-surgical vascular complications and one died secondary to this. The mean time to surgery after SBRT was 3.3 months. An R0 resection was performed in 92% of patients (n = 11/12). In 25% (n = 3/12) of patients, a complete pathologic response was achieved, and an additional 16.7% (n = 2/12) demonstrated <10% viable tumor cells. Kaplan-Meier estimated median progression free survival is 27.4 months. Overall survival is 92%, 64% and 51% at 1-, 2-, and 3-years. Conclusions: This study reports the pathologic response in patients treated with neoadjuvant chemotherapy and SBRT for borderline resectable and locally-advanced pancreatic cancer. In our experience, 92% achieved an R0 resection and 41.7% of patients demonstrated either complete or extensive pathologic response to treatment. The results of a phase II study of this novel approach will be forthcoming. © 2013 Rajagopalan et al.; licensee BioMed Central Ltd

    Caspase Inhibitors of the P35 Family Are More Active When Purified from Yeast than Bacteria

    Get PDF
    Many insect viruses express caspase inhibitors of the P35 superfamily, which prevent defensive host apoptosis to enable viral propagation. The prototypical P35 family member, AcP35 from Autographa californica M nucleopolyhedrovirus, has been extensively studied. Bacterially purified AcP35 has been previously shown to inhibit caspases from insect, mammalian and nematode species. This inhibition occurs via a pseudosubstrate mechanism involving caspase-mediated cleavage of a “reactive site loop” within the P35 protein, which ultimately leaves cleaved P35 covalently bound to the caspase's active site. We observed that AcP35 purifed from Saccharomyces cerevisae inhibited caspase activity more efficiently than AcP35 purified from Escherichia coli. This differential potency was more dramatic for another P35 family member, MaviP35, which inhibited human caspase 3 almost 300-fold more potently when purified from yeast than bacteria. Biophysical assays revealed that MaviP35 proteins produced in bacteria and yeast had similar primary and secondary structures. However, bacterially produced MaviP35 possessed greater thermal stability and propensity to form higher order oligomers than its counterpart purified from yeast. Caspase 3 could process yeast-purified MaviP35, but failed to detectably cleave bacterially purified MaviP35. These data suggest that bacterially produced P35 proteins adopt subtly different conformations from their yeast-expressed counterparts, which hinder caspase access to the reactive site loop to reduce the potency of caspase inhibition, and promote aggregation. These data highlight the differential caspase inhibition by recombinant P35 proteins purified from different sources, and caution that analyses of bacterially produced P35 family members (and perhaps other types of proteins) may underestimate their activity
    corecore