17 research outputs found

    Composition, diversity and structure of vascular epiphytes in two contrasting Central Amazonian floodplain ecosystems

    Get PDF
    Research focusing on assemblages of vascular epiphytes in the Amazon are scarce. This is especially true for Amazonian floodplain forests, for which only two previous studies have been published. We compared composition, richness and structure of epiphyte assemblages in white-water and black-water floodplains (várzea and igapó) in Central Amazonia in order to close knowledge gaps concerning the distribution and richness of epiphytes. We established sixteen 25x25 m plots in each forest type, and counted and identified all species of vascular epiphytes occurring on trees with a diameter at breast height (DBH) ≥10 cm. We observed a clear distinction in epiphytic species composition (r2=0.83, p=0.001) and diversity (t=3.24, P=0.003) between the two environments, with 61.5 % of species being restricted to várzea, 22.9 % restricted to igapó and only 15.6 % common to both ecosystems. The floodplains were also structurally different for the most abundant species and those with the highest Epiphytic Importance Value (IVe). The diversity of trees did not influence the epiphyte diversity in either ecosystem. The forests were found to differ in the composition, diversity and structure of their epiphytic assemblages, which must be taken into account when designing conservation action plans for these ecosystems and for their vascular epiphytes

    Specific Collaborative Group Intervention for Patients with Medically Unexplained Symptoms in General Practice: A Cluster Randomized Controlled Trial

    No full text
    Background: Patients with medically unexplained symptoms (MUS) are frequent in primary care and substantially impaired in their quality of life (QoL). Specific training of general practitioners (GPs) alone did not demonstrate sustained improvement at later follow-up in current reviews. We evaluated a collaborative group intervention. Methods: We conducted a cluster randomized controlled trial. Thirty-five GPs recruited 304 MUS patients (intervention group: 170; control group: 134). All GPs were trained in diagnosis and management of MUS (control condition). Eighteen randomly selected intervention GPs participated in training for a specific collaborative group intervention. They conducted 10 weekly group sessions and 2 booster meetings in their practices, together with a psychosomatic specialist. Six and 12 months after baseline, QoL was assessed with the Short-Form 36. The primary outcome was the physical composite score (PCS), and the secondary outcome was the mental composite score (MCS). Results: At 12 months, intention-to-treat analyses showed a significant between-group effect for the MCS (p = 0.023) but not for the PCS (p = 0.674). This effect was preceded by a significant reduction of somatic symptom severity (15-item somatic symptom severity scale of the Patient Health Questionnaire, PHQ-15) at 6 months (p = 0.008) that lacked significance at 12 months (p = 0.078). As additional between-group effects at 12 months, per-protocol analyses showed less health anxiety (Whiteley-7; p = 0.038) and less psychosocial distress (PHQ; p = 0.024); GP visits were significantly (p = 0.042) reduced in the intervention group. Conclusions: Compared to pure GP training, collaborative group intervention achieved a progressive, clinically meaningful improvement in mental but not physical QoL. It could bridge gaps between general practice and mental health care

    Nodular inflammatory foci are sites of T cell priming and control of murine cytomegalovirus infection in the neonatal lung.

    Get PDF
    Neonates, including mice and humans, are highly susceptible to cytomegalovirus (CMV) infection. However, many aspects of neonatal CMV infections such as viral cell tropism, spatio-temporal distribution of the pathogen as well as genesis of antiviral immunity are unknown. With the use of reporter mutants of the murine cytomegalovirus (MCMV) we identified the lung as a primary target of mucosal infection in neonatal mice. Comparative analysis of neonatal and adult mice revealed a delayed control of virus replication in the neonatal lung mucosa explaining the pronounced systemic infection and disease in neonates. This phenomenon was supplemented by a delayed expansion of CD8(+) T cell clones recognizing the viral protein M45 in neonates. We detected viral infection at the single-cell level and observed myeloid cells forming "nodular inflammatory foci" (NIF) in the neonatal lung. Co-localization of infected cells within NIFs was associated with their disruption and clearance of the infection. By 2-photon microscopy, we characterized how neonatal antigen-presenting cells (APC) interacted with T cells and induced mature adaptive immune responses within such NIFs. We thus define NIFs of the neonatal lung as niches for prolonged MCMV replication and T cell priming but also as sites of infection control
    corecore