176 research outputs found

    Photon statistics in the macroscopic realm measured without photon-counters

    Get PDF
    In a macroscopic realm, in which photons are too many for being counted by any photon counting detector, photon statistics can be measured by using detectors simply endowed with linear response. We insert one of such detectors in a conventional photon-counting apparatus, which returns a voltage every time the detector responds to light by generating a number of elementary charges via its primary photo-detection process. We only assume that, when a single charge is photo-generated, the probability density of the voltages is a distribution that is narrow with respect to its mean value. Under this hypothesis the output voltages can be suitably binned so that their probability distribution is the same as that of the photo-generated charges, that is, of the detected photons

    Light statistics by non-calibrated linear photodetectors

    Full text link
    We theoretically demonstrate that detectors endowed with internal gain and operated in regimes in which they do not necessarily behave as photon-counters, but still ensure linear input/output responses, can allow a self-consistent characterization of the statistics of the number of detected photons without need of knowing their gain. We present experiments performed with a photo-emissive hybrid detector on a number of classical fields endowed with non-trivial statistics and show that the method works for both microscopic and mesoscopic photon numbers. The obtained detected-photon probability distributions agree with those expected for the photon numbers, which are also reconstructed by an independent method.Comment: submitted to the special issue "Tests of foundations of Quantum Mechanics" of "Advanced Science Letters

    Intensity correlations, entanglement properties and ghost imaging in multimode thermal-seeded parametric downconversion: Theory

    Get PDF
    We address parametric-downconversion seeded by multimode pseudo-thermal fields. We show that this process may be used to generate multimode pairwise correlated states with entanglement properties that can be tuned by controlling the seed intensities. Multimode pseudo-thermal fields seeded parametric-downconversion represents a novel source of correlated states, which allows one to explore the classical-quantum transition in pairwise correlations and to realize ghost imaging and ghost diffraction in regimes not yet explored by experiments.Comment: 9 pages, 3 figure

    Self-consistent characterization of light statistics

    Full text link
    We demonstrate the possibility of a self-consistent characterization of the photon-number statistics of a light field by using photoemissive detectors with internal gain simply endowed with linear input/output responses. The method can be applied to both microscopic and mesoscopic photon-number regimes. The detectors must operate in the linear range without need of photon-counting capabilities.Comment: To be published in "Journal of Modern Optics

    The quantum-classical transition in thermally seeded parametric downconversion

    Get PDF
    We address the pair of conjugated field modes obtained from parametric-downconversion as a convenient system to analyze the quantum-classical transition in the continuous variable regime. We explicitly evaluate intensity correlations, negativity and entanglement for the system in a thermal state and show that a hierarchy of nonclassicality thresholds naturally emerges in terms of thermal and downconversion photon number. We show that the transition from quantum to classical regime may be tuned by controlling the intensities of the seeds and detected by intensity measurements. Besides, we show that the thresholds are not affected by losses, which only modify the amount of nonclassicality. The multimode case is also analyzed in some detail.Comment: 12 pages, 3 figure

    Chaotic imaging in frequency downconversion

    Full text link
    We analyze and realize the recovery, by means of spatial intensity correlations, of the image obtained by a seeded frequency downconversion process in which the seed field is chaotic and an intensity modulation is encoded on the pump field. Although the generated field is as chaotic as the seed field and does not carry any information about the modulation of the pump, an image of the pump can be extracted by measuring the spatial intensity correlations between the generated field and one Fourier component of the seed

    The quantum-classical transition in thermally seeded parametric downconversion

    Get PDF
    We address the pair of conjugated field modes obtained from parametric-downconversion as a convenient system to analyze the quantum-classical transition in the continuous variable regime. We explicitly evaluate intensity correlations, negativity and entanglement for the system in a thermal state and show that a hierarchy of nonclassicality thresholds naturally emerges in terms of thermal and downconversion photon number. We show that the transition from quantum to classical regime may be tuned by controlling the intensities of the seeds and detected by intensity measurements. Besides, we show that the thresholds are not affected by losses, which only modify the amount of nonclassicality. The multimode case is also analyzed in some detail.Comment: 12 pages, 3 figure

    Sub-shot-noise photon-number correlation in mesoscopic twin-beam of light

    Get PDF
    We demonstrate sub-shot-noise photon-number correlations in a (temporal) multimode mesoscopic (∼103\sim 10^3 detected photons) twin-beam produced by ps-pulsed spontaneous non-degenerate parametric downconversion. We have separately detected the signal and idler distributions of photons collected in twin coherence areas and found that the variance of the photon-count difference goes below the shot-noise limit by 3.25 dB. The number of temporal modes contained in the twin-beam, as well as the size of the twin coherence areas, depends on the pump intensity. Our scheme is based on spontaneous downconversion and thus does not suffer from limitations due to the finite gain of the parametric process. Twin-beams are also used to demonstrate the conditional preparation of a nonclassical (sub-Poissonian) state.Comment: 5 pages, 5 (low-res) figures, to appear on PR
    • …
    corecore