
Intensity correlations, entanglement properties, and ghost imaging in multimode thermal-seeded

parametric down-conversion: Theory

Ivo P. Degiovanni,
1
Maria Bondani,

2
Emiliano Puddu,

3,4
Alessandra Andreoni,

3,4
and Matteo G. A. Paris

5,6

1
Istituto Nazionale di Ricerca Metrologica, Torino, Italy

2
National Laboratory for Ultrafast and Ultraintense Optical Science—C.N.R.-I.N.F.M., Como, Italy

3
Dipartimento di Fisica e Matematica, Università degli Studi dell’Insubria, Como, Italy

4
Consiglio Nazionale delle Ricerche, Istituto Nazionale per la Fisica della Materia (C.N.R.-I.N.F.M.), Como, Italy

5
Dipartimento di Fisica e Matematica, Università degli Studi dell’Insubria, Como, Italy

6
I.S.I. Foundation, I-10133 Torino, Italy

sReceived 12 July 2007; published 14 December 2007d

We address parametric down-conversion seeded by multimode pseudothermal fields. We show that this

process may be used to generate multimode pairwise correlated states with entanglement properties that can be

tuned by controlling the seed intensities. Parametric down-conversion seeded by multimode pseudothermal

fields represents a source of correlated states, which allows one to explore the classical-quantum transition in

pairwise correlations and to realize ghost imaging and ghost diffraction in regimes not yet explored by

experiments.
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I. INTRODUCTION

Ghost imaging f1g and ghost diffraction f2g consist of the
retrieval of an object transmittance pattern or its Fourier

transform, respectively, by evaluating a fourth-order correla-

tion function at the detection planes between the field that

never interacted with the object and a correlated one trans-

mitted by the object. A general ghost-imaging–ghost-

diffraction scheme involves a source of correlated bipartite

fields and two propagation arms usually called test sTd and
reference sRd. In the T arm, where the object is placed, a

bucket sor a pointliked detector measures the total light trans-
mitted by it. The R arm contains an optical setup suitable for

reconstructing the image of the object or its Fourier trans-

form and a position-sensitive detector f3g.
The correlations needed for ghost imaging and ghost dif-

fraction may be either quantum, as those shown by entangled

states produced by spontaneous parametric down-conversion

sPDCd f1g or classical, as those present in the fields at the
output of a beam-splitter fed with a multimode pseudother-

mal beam f4–6g. In recent years several authors discussed
analogies and differences between the two cases in terms of

the achievable visibility and of the optical configurations

needed for image reconstruction. A history of this debate

from different points of view may be found in Ref. f3g and
references therein. Recently, it has been suggested that the

entangled nature of the light source f7–9g may be necessary
to satisfy the “back-propagating” thin-lens equation, which,

indeed, is fulfilled by PDC-based ghost-imaging systems.

Among other things, we prove that this claim is incorrect.

In this paper, we discuss the use of a PDC-based light

source for ghost imaging and diffraction. In our scheme ssee
Fig. 1d, the nonlinear crystal realizing PDC is seeded by two
multimode thermal sMMTd beams. We show that the en-

tanglement properties and the amount of correlation at the

output may be tuned by changing the intensities of the seeds,

thus leading to a source that can be used to investigate the

transition from the classical to the quantum regime. Besides,

our source allows ghost-image reconstruction with the same

optical scheme used for ghost imaging based on spontaneous

PDC, with the “back-propagating” thin-lens equation that is

satisfied irrespective of the entanglement of the state. We

notice that the effectiveness of the setup discussed here has

already been demonstrated in the case of a crystal seeded

with a single MMT beam f10g.
The paper is structured as follows. In Sec. II we calculate

the state obtained from our PDC source with the injection of

MMT seeds on both the T and R arms, thus revealing that the

output field on each arm maintains the statistics of the seed.

In Sec. III we analyze both the intensity correlations between

the output beams and the entanglement properties of the

overall state. We explicitly evaluate separability thresholds in

terms of the seed intensities, and show that the condition for

the existence of nonclassical correlations in intensity mea-

surements subsumes the condition for inseparability, i.e.,

sub-shot-noise correlations are a sufficient condition for en-

tanglement in our system. We also show that entanglement

properties of the output field are not affected by losses taking

place after the PDC interaction. In Sec. IV we show that the

state generated in our scheme satisfies the “back-

propagating” thin-lens equation independently on the seed

intensities, i.e., independently of being entangled or not, and

it is suitable for realizing ghost-imaging and ghost-

diffraction experiments. Finally, Sec. V closes the paper with

some concluding remarks.

II. PARAMETRIC DOWN-CONVERSION

WITH THERMAL SEEDS

The interaction scheme we are going to consider is

sketched in Fig. 1. It consists of a nonlinear xs2d crystal

pumped by a monochromatic nondepleted plane wave propa-

gating along the z axis. The Hamiltonian describing the re-

sulting parametric process is given by
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HI =E d2rE
0

L

dz xs2dEpsx,tdaTsx,tdaRsx,td + H.c., s1d

L being the crystal length and xs2d the nonlinear susceptibil-

ity. The pump field may be written as Epsx , td
=Ep expfisVpt−Kpzdg f11g.
We can write the interacting quantum fields as

a jsx,td ~ o
qj,nj

a j,qj,nj
eifKj,zz+qj·r−sVj+njdtg sj = R,Td , s2d

where q j is the transverse momentum and K j,z is the magni-

tude of the longitudinal momentum, K j,z=ÎK j
2−q j

2, being

K j=n jsV j+n jd /c, with n j the index of refraction, V j the se-

lected central frequency in channel j, n j the frequency dis-

placement with respect to V j, and c the speed of light in the

vacuum. The commutation relation of the quantum fields are

fa j,q,n,a j8,q8,n8

† g = d j,j8
dq,q8

dn,n8
sj, j8 = R,Td ,

fa j,q,n,a j8,q8,n8
g = 0. s3d

The evolution of a quantum system induced by the interac-

tion Hamiltonian in Eq. s1d is described by the unitary op-
erator U=exps−i"−1eHIdtd, where

−
i

"
E HIdt = io

q,n

kq,naT,q,naR,−q,−n + H.c., s4d

where kq,n~sincfsKp−KT,z−KR,zdL /2g. To obtain Eq. s4d we
have exploited the conservation of energy at the central

wavelength Vp=VT+VR obtaining nT=−nR=n, and the con-
servation of transverse momentum qT=−qR=q. As, accord-

ing to Eq. s4d, the extension to the nonmonochromatic case
is, in most cases, straightforward, in the following analysis

we will focus on the monochromatic emission at the frequen-

cies VR and VT and hence we will drop the subscript n from
the variables.

The operator U can be rewritten in terms of the operators

Sq= skqaT,qaR,−q+H.c.d as U=expsioqSqd. According to the
commutation relations in Eq. s3d, we have fSq ,Sq8

g=0, and
therefore U=^qe

iSq, i.e., the interaction establishes pairwise

correlations among the modes.

In our analysis we focus on the case in which both the T

and R arms are seeded with uncorrelated MMT beams

rin = ^

q

rT,q ^ rR,−q,

r j,q =o
n=0

`

P j,qsndunl j,qj,qknu , s5d

where j=R ,T and unl j,q denotes the Fock number basis for
the mode q of the j arm. The thermal probability distribution

of the input is given by

P j,qsnd = m j,q
n s1 + m j,qd−n−1,

m j,q being the average photon number per mode. The density

matrix at the output is given by

rout = UrinU
† = ^

q

eiSqrT,q ^ rR,−qe
−iSq. s6d

According to f12g, it is possible to “disentangle” eiSq by us-

ing the two-boson representation of the SUs1,1d algebra as

eiSq = exphzqaT,q
†
aR,−q
† jexph− hqsaT,q

†
aT,q + aR,−q

†
aR,−q + 1dj

3exph− zq
p
aT,qaR,−qj , s7d

where zq=−ie
−iwq tanhsukqud, hq=lnfcoshukqug, and eiwq

=kq / ukqu.
Equation s7d implies that

eiSqunlT,q ^ umlR,−q = o
k=0

minhm,nj

o
l=0

`

Cqsm,n,k,ldun − k + llT,q

^ um − k + llR,−q, s8d

with

Cqsm,n,k,ld = e−hqsn+m−2k+1d

3
În ! m ! sn − k + ld ! sm − k + ld!

k ! l ! sn − kd ! sm − kd!
zq
l s− zq

pdk.

s9d

By substituting Eq. s8d in Eq. s6d we obtain the output state
in the Schrödinger picture as

rout = ^

q
o
nm

PT,qsndPR,−qsmd o
k1,k2=0

minhm,nj

o
l1,l2=0

`

Cqsm,n,k1,l1d

3Cqsm,n,k2,l2d
pun − k1 + l1lT,qT,qkn − k2 + l2u

^ um − k1 + l1lR,−qR,−qkm − k2 + l2u . s10d

Meanwhile, in the Heisenberg description, the modes after

the interaction with the crystal are given by b j,q=U
†a j,qU,

i.e.,

b j,q = Uqa j,q + e
iwqVqa j8,−q

† sj, j8 = R,T, j Þ j8d , s11d

where Uq=coshukqu and Vq=sinhukqu sand obviously Uq

=U−q, Vq=V−q, and wq=w−qd. Equation s11d represents the
quantum dynamical evolution of the system i.e., the input-

output relations of the parametric process. Of course, they

are independent on the initial states and are valid in any

working regime, i.e., for any input state and for any value of

the pump intensity within the parametric approximation. This

NLC

Pump

FIG. 1. sColor onlined Schematic diagram of the nonlinear

interaction. T and R are the test and reference arms of the setup.
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includes the two-photon regime as well as the continuous

variable regime. On the other hand, the entanglement prop-

erties of the output state strongly depend on the initial state.

In the following section we discuss in detail the entangle-

ment properties for the case of thermal light at the input.

As expected, the first moments of the photon distribution

for each mode are those of a thermal statistics

knT,ql = mT,q + nPDC,qs1 + mT,q + mR,−qd ,

knR,−ql = mR,−q + nPDC,qs1 + mT,q + mR,−qd ,

ksDnT,qd2l = knT,qlsknT,ql + 1d ,

ksDnR,−qd
2l = knR,−qlsknR,−ql + 1d , s12d

where kOl=TrfOroutg=TrfU†OUring sSchrödinger and

Heisenberg picture, respectivelyd, DO=O− kOl, and nPDC,q
=sinh2ukqu is the average number of photons due to sponta-
neous PDC.

Notice that the case of vacuum inputs, rin= u0lk0uT
^ u0lk0uR, corresponds to spontaneous down-conversion, i.e.,
to the generation of twin-beam, whereas the case of a single

MMT on one arm and the vacuum on the other, rin
=^qsu0lk0uT,q ^ rR,−qd, corresponds to the state considered in
Ref. f10g.

III. ENTANGLEMENT AND INTENSITY CORRELATIONS

In this section we address intensity correlations and en-

tanglement properties of the beams generated in our scheme.

As we will see, the amount of nonclassical correlations and

entanglement can be tuned upon changing the intensity of the

thermal seeds and there exist thresholds for the appearance

of those nonclassical features. On the other hand, the index

of total correlations seither classical or quantumd is a mono-
tonically increasing function of both the seed and the PDC

energy.

A. Entanglement and separability

The down-conversion process is known to provide pair-

wise entanglement between signal and idler beams. In our

notations the spossiblyd entangled modes are aT,q and aR,−q.

In the spontaneous process the output state is entangled for

any value of the parametric gain si.e., for any value of the
crystal susceptibility, length, etc.d, whereas in the case of a
thermally seeded crystal the degree of entanglement crucially

depends on the intensity of the seeds.

Since thermal states are Gaussian and the PDC Hamil-

tonian is bilinear in the field modes, the overall output state

is also Gaussian. Therefore, the entanglement properties may

be evaluated by checking the positivity of the partial trans-

pose sPPT conditiond, which represents a sufficient and nec-
essary condition for separability for Gaussian pairwise mode

entanglement f13g. Gaussian states are completely character-
ized by their covariance matrix. In this context let us intro-

duce the “position”s-liked operators X and “momentum”

s-liked operators Y

X j,q =
a j,q + a j,q

†

Î2
,

Y j,q =
a j,q − a j,q

†

iÎ2
sj = R,Td . s13d

Introducing the vector operator

j = sXT,q1
,YT,q1

,XR,−q1
,YR,−q1

, . . .dT, s14d

with m=1,2 , . . . ,`, from the commutation relations in Eq.

s3d gives

fja,jbg = iVa,b, s15d

where V=%mv % v and v is the symplectic matrix

v = S 0 1

− 1 0
D . s16d

The covariance matrix V is calculated as Va,b

=2−1khDja ,Djbjl, where hO1 ,O2j denotes the anticommuta-
tor. Uncertainty relation among the position and momentum

operators impose a constraint on the covariance matrix, V

+
i

2
V$0, corresponding to the positivity of the state. The

input-output relations for position and momentum operators

are calculated according to Eq. s11d, obtaining

U†X j,qU = UqX j,q + VqX j8,−q,

U†Y j,qU = UqY j,q − VqY j8,−q sj, j8 = R,T, j Þ j8d .

s17d

Without any loss of generality, in the derivation of Eqs. s17d
we set wq=0, which, in turn, corresponds to a proper choice

of the phase or, equivalently, to a proper redefinition of the

operators a j,q that amounts to a rotation of the phase space.

From Eqs. s17d we calculate the covariance matrix

V = %

m=1

`

Vqm
=1

Vq1
0 0 ¯

0 Vq2
0 ¯

0 0 Vq3
¯

] ] ] �
2 s18d

with

Vq = 1
Aq 0 Cq 0

0 Aq 0 − Cq

Cq 0 Bq 0

0 − Cq 0 Bq

2 , s19d

where

Aq = fUq
2s2mT,q + 1d + Vq

2s2mR,−q + 1dg/2,

Bq = fUq
2s2mR,−q + 1d + Vq

2s2mT,q + 1dg/2,

Cq = UqVqsmT,q + mR,−q + 1d . s20d

V satisfies the uncertainty relations ensuring the positivity of

rout.
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In order to check whether and when the state rout is en-
tangled we apply the PPT criteria for Gaussian entanglement

f13g. For instance, we apply the positive map LR,−q8
to the

state rout. LR,−q8
sroutd is the transposition scomplex conjuga-

tiond only of the subspace HR,−q8
corresponding to the mode

R ,−q8. Simon showed that this corresponds to calculation of

the covariance matrix Ṽ, where all the matrix blocks Vq

remain the same except for the matrix Vq8
→ Ṽq8

. Ṽq8
is

calculated with a sign change in the R ,−q8 momentum vari-

able sYR,−q8
→−YR,−q8

d, while the other momentum and po-

sition variables remain unchanged sXT,q8
→XT,q8

, YT,q8
→YT,q8

, and XR,−q8
→XR,−q8

d. Thus we obtain

Ṽq8
=1

Aq8 0 Cq8 0

0 Aq8 0 Cq8

Cq8 0 Bq8 0

0 Cq8 0 Bq8

2 , s21d

where Aq8
, Bq8

, and Cq8
are defined in Eqs. s20d. According

to PPT criteria, the separability of rout is guaranteed by the
positivity of LR,−q8

sroutd, i.e.,

Ṽ +
i

2
V $ 0. s22d

Inequality in Eq. s22d corresponds to

mT,q8
mR,−q8

− nPDC,q8
s1 + mT,q8

+ mR,−q8
d $ 0. s23d

We observe that the spontaneous PDC corresponds to the

situation with mT,q8
=mR,−q8

=0; thus rout is entangled. Also
the case considered in Ref. f10g, a MMT seeded PDC only
on one arm si.e., mR,−q8

=0d, is always entangled. On the
contrary, in the case of MMT seeded PDC on both arms,

inequality in Eq. s23d introduces a threshold. For instance, if
we consider a MMT seed with the same mean number of

photon per mode, m, only when the inequality m2

$nPDC,qs1+2md is satisfied, rout is separable. It is notewor-

thy to observe that if the PPT is applied to any other sub-

spaces the inequalities obtained are analogous to Eq. s23d,
and thus the result is the same.

B. Separability and losses

Here we address the problem of the effect of the losses on

the separability of the state in Eq. s10d. In fact the presence
of losses, e.g., internal reflection or absorption in the nonlin-

ear crystal, may modify the quantum properties of the state,

in particular the transition from entanglement to separability,

which, in the absence of losses, is marked by the condition in

Eq. s23d.
Losses in a quantum channel can be modeled by a beam

splitter, in one port of which the quantum channel is injected

while the vacuum enters the other port. The model implies

that Gaussian states after interaction are still Gaussian states

due to the bilinearity of the beam-splitter Hamiltonian. Thus,

also in the presence of losses, the covariance matrix com-

pletely describes the quantum state. If we consider an overall

transmission factor t on both channels we obtain the covari-

ance matrix Vt=tV+ s1−td1 /2. The form of the covariance

matrix Vt is completely analogous to Eq. s18d, where the
block matrices Vq are substituted with the block matrices

Vt,q. Vt,q has the same structure of Vq in Eq. s19d, where
Aq, Bq, and Cq are substituted by

At,q = h1 + 2tfUq
2mT,q + Vq

2smR,−q + 1dgj/2,

Bt,q = h1 + 2tfUq
2mR,−q + Vq

2smT,q + 1dgj/2,

and

Ct,q = tCq,

respectively. Thus, following the same line of thought of Sec.

III A we obtain the covariance matrix Ṽt, corresponding to

the partial transposition of the state. According to PPT sepa-

rability criteria, the state is separable if and only if the

inequality Ṽt+
i

2
V$0 is fulfilled. This condition can be

rewritten as

t2fmT,q8
mR,−q8

− nPDC,q8
s1 + mT,q8

+ mR,−q8
dg $ 0. s24d

Since Eq. s24d is fully equivalent to Eq. s23d, we conclude
that losses do not affect the entanglement properties of the

state in Eq. s10d.

C. Intensity correlations

We now evaluate the pairwise intensity correlations pos-

sessed by the generated beams. In addition, we analyze the

connections between threshold for separability and the

threshold required to have nonclassical correlations. As we

will see a state obtained by thermally seeded PDC that ex-

hibits sub-shot-noise correlations is entangled, whereas the

converse is not necessarily true. In other words, the existence

of nonclassical intensity correlations is a sufficient condition

for entanglement.

The normalized index of intensity correlation between a

pair of modes a j,q and a j8,q8
is defined as

g j,j8
sq,q8d =

G j,j8
sq,q8d

ÎksDnT,qd2lksDnR,−qd
2l
, s25d

where the correlation term is given by

G j,j8
sq,q8d = kDn j,qDn j8,q8

l . s26d

Upon evaluating the first moments as we did in Eq. s12d we
have, for the pair of modes aT,q and aR,−q,

GT,Rsq,− qd = nPDC,qs1 + nPDC,qds1 + mT,q + mR,−qd2 = Cq
2 .

s27d

A nonzero value of GT,R, and hence of gT,R, indicates the

presence of correlations between the considered modes. Per-

fect correlations correspond to gT,R=1. Note that gT,R is an

increasing function of nPDC and does not undergo any thresh-

old. In Fig. 2 we plot gT,R ssolid linesd as a function of nPDC
in two different conditions, namely, mT=0 and mRÞ0 fpanel
sadg and mT=mRÞ0 fpanel sbdg. As expected, gT,R ap-

proaches unity irrespective of the mean values of the seeding
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thermal fields as soon as nPDC becomes relevant.

For large nPDC,q the index of correlation approaches unity

as follows:

gT,Rsq,− qd . 1 −
1

2

mT,q + mR,−q + 2mT,qmR,−q

s1 + mT,q + mR,−qd2
1

nPDC,q
2

.

s28d

In the two cases mT,q=m≫1 and mR,−q=0 sor vice versad and
mT,q=mR,−q=m≫1 we have, respectively,

gT,Rsq,− qd . 1 −
1

s1 + nPDC,qdnPDC,q

1

2m
,

gT,Rsq,− qd . 1 −
1

s1 + 2nPDC,qd2
+ OS 1

m2
D . s29d

The nonclassical nature of this pairwise correlation may

be assessed by the quantity f14g

NRFT,Rsqd =
ksDnT,qd2l + ksDnR,−qd2l − 2GT,Rsq,− qd

knT,ql + knR,−ql
,

s30d

which is usually referred to as “the noise reduction factor.” A

noise reduction, NRFT,Rsqd,1, indicates the presence of

nonclassical correlations. The value NRFT,Rsqd=1 is usually
called “shot-noise limit” and corresponds to the case of a pair

of uncorrelated coherent signals. By substituting the result

for our system, we get

NRFT,Rsqd =
mT,qs1 + mT,qd + mR,−qs1 + mR,−qd

mT,q + mR,−q + 2nPDC,qs1 + mT,q + mR,−qd
.

s31d

We have NRFT,Rsqd,1 if

nPDC,q .
1

2

mT,q
2 + mR,−q

2

1 + mT,q + mR,−q

, s32d

which subsumes the separability threshold of Eq. s23d and
individuates the same region for mT,q=mR,−q. Therefore, for

thermally seeded PDC, sub-shot-noise correlations imply en-

tanglement f15g. In Fig. 2 we also plot NRFT,R as a function
of nPDC for the same parameters used for gT,R. As expected,

the figure shows that NRFT,R crosses the shot-noise level at

different values of nPDC that depend on the mean values of

the thermal seeds, thus confirming the intuition that, in order

to achieve sub-shot-noise correlations in the presence of two

thermal seeds, we need to have a PDC process strong

enough.

IV. MMT-PDC BASED GHOST IMAGING AND GHOST

DIFFRACTION

The bipartite state obtained by the nonlinear process de-

scribed above is suitable for applications to ghost-imaging–

ghost-diffraction protocols. Ghost-imaging and ghost-

diffraction protocols rely on the capability of retrieving an

object transmittance pattern and its Fourier transform, re-

spectively, by the evaluation of a fourth-order correlation

function at the detection planes of a light field that has never

interacted with the object and a correlated one transmitted by

the object. We consider the schemes depicted in Fig. 3. An

object, described by the transmission function tsxT9d, is in-
serted in the T arm on the plane xT9 and a bucket detector

measures the total light, transmitted by the transparency. The

R arm contains an optical setup suitable for reconstructing

either the image of the object or its Fourier transform and a

position-sensitive detector that measures the local intensity

map. The procedure for calculating the correlation function

between the light detected in the two arms of the setup is

equivalent to evaluating first the correlation function be-

tween the intensity operators, which in the Heisenberg pic-

ture corresponds to

Gs2dsxR,xTd = TrfDIRsxRdDITsxTdring

= TrfIRsxRdITsxTdring

− TrfIRsxRdringTrfITsxTdring , s33d

(b)

(a)

FIG. 2. sColor onlined Index of total correlations gT,R ssolid
lines; legend correlates to lines from top to bottom in figured and
noise reduction factor NRFT,R sline plus symbold as a function of
nPDC in the cases sad mT=0 and mRÞ0 and sbd mT=mRÞ0. The

values chosen for the parameters are indicated in the figures.
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and then integrating over all the values of xT

Gs2dsxRd =E dxTG
s2dsxR,xTd . s34d

In Eq. s33d we have defined the intensity operators as I jsx jd
=c j

†sx jdc jsx jd sj=R ,Td, with c jsx jd the field operators at the
detection planes. Thus the average operation in Eq. s33d is
taken on the initial state rin fsee Eq. s5dg. Note that
TrfI jsx jdring are proportional to the detected intensities and
that TrfIRsxRdITsxTdring is the second-order correlation func-
tion f11g.
In order to calculate the mean values in Eq. s33d, we

exploit the connection between the field operators at the de-

tection planes and those at the output of the crystal

c jsxid =E dx j8h jsx j,x j8db jsx j8d , s35d

where b jsx j8d are the reference and test field operators at the
output face of the crystal fsee Eq. s11dg and hRsxR ,xR8d and
hTsxT ,xT8d are the two response functions describing the
propagation of the field in the two arms of the setup f16g.
By using Eqs. s35d and s33d we can rewrite Gs2dsxR ,xTd as

Gs2dsxR,xTd =E dxR8dxR9dxT8dxT9hRsxR,xR8dhR
psxR,xR9d

3hTsxT,xT8dhT
psxT,xT9d

3hTrfbR
†sxR9dbRsxR8dbT

†sxT9dbTsxT8dring

− TrfbR
†sxR9dbRsxR8dringTrfbT

†sxT9dbTsxT8dringj .

s36d

Equation s36d can be simplified by calculating the factoriza-
tion rule for TrfbR

†sxR9dbRsxR8dbT
†sxT9dbTsxT8dring, that is by re-

writing the four-points correlation function in terms of the

two-points correlation functions f17g. To do this we rewrite
b jsxd in terms of plane waves as b jsxd=Noqe

iq·xb j,q sN is the

normalization coefficientd and then substitute the input-

output relations of Eq. s11d. After some algebra we obtain

TrfbR
†sxR9dbRsxR8dbT

†sxT9dbTsxT8dring

=N4 o
q,q8,q9,q-

e−isq·xR9−q8·xR8+q9·xT9−q-·xT8d

3TrfbR,q
†

bR,q8
b
T,q9

†
bT,q-

ring

=N4o
q,q8

e−ifq·sxR9−xR8d+q8·sxT9−xT8dgfUq
2mT,q

+ Vq
2s1 + mR,−qdgfU

q8

2
mR,q8

+ V
q8

2 s1 + mT,−q8
dg

+N4o
q,q8

e−ifq·sxR9−xT9d−q8·sxR8−xT8dgfUqV−qmT,q

+ VqU−qs1 + mR,−qdgfUq8
V−q8

s1 + mT,q8
d

+ Vq8
U−q8

mR,−q8
g . s37d

Performing the same calculation for

TrfbR
†sxR9dbRsxR8dringTrfbT

†sxT9dbTsxT8dring

+ TrfbR
†sxR9dbT

†sxT9dringTrfbRsxR8dbTsxT8dring , s38d

we obtain the same result obtained in Eq. s37d. Thus we
obtained the noteworthy factorization rule

TrfbR
†sxR9dbRsxR8dbT

†sxT9dbTsxT8dring

− TrfbR
†sxR9dbRsxR8dringTrfbT

†sxT9dbTsxT8dring

= TrfbR
†sxR9dbT

†sxT9dringTrfbRsxR8dbTsxT8dring . s39d

Note that the factorization rule in Eq. s39d obtained for
MMT-PDC state is exactly the same obtained for spontane-

ous PDC f17g and multithermal one-arm-seeded PDC f10g.
According to Eq. s39d, and in complete analogy with the case
of spontaneous PDC f17g, also in the case of the MMT-
seeded PDC we obtain

Gs2dsxR,xTd = UE dxR8E dxT8hRsxR,xR8dhTsxT,xT8d

3TrfbRsxR8dbTsxT8dringU2, s40d

where

TrfbRsxR8dbTsxT8dring

=N2o
q,q8

eisq·xR8+q8·xT8dTrfbR,qbT,q8
ring

~ o
q,q8

eifq·sxT8−xR8d+wqgsUqVq8
TrfaR,qaR,−q8

†
ring

+ VqUq8
TrfaT,−q

†
aT,q8

ringd

=o
q

eifq·sxT8−xR8d+wqgCq. s41d

By using Eq. s41d, Eq. s40d can be rewritten as

Gs2dsxR,xTd ~ Uo
q

h̃RsxR,− qdh̃TsxT,qdCqU2, s42d

where h̃ jsx j ,qd=edx j8e
iq·xj8h jsx j ,x j8d.

NLC
t(x

T
)

C
C
D
se
n
so
r

x
T

x
R

NLC

C
C
D
se
n
so
r

x
T

x
R

(a)

(b)

FIG. 3. sColor onlined Setup for ghost-imaging and ghost-
diffraction experiments: t, object transmission function; fT,R, focal

length of lenses. sad Experimental configuration with detection
plane coinciding with the object plane, xT=xT9. sbd Experimental
configuration with detection plane coinciding with the Fourier plane

of the collecting lens in the test arm.
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According to Fig. 3, we consider the following two dif-

ferent schemes for the collection optics in the test arm of the

setup.

sad The detection plane coincides with the plane of the
transparency, xT=xT9, and hence

h̃TsxT,qd ~ e−isld1/4pdq2e−iq·xTtsxTd s43d

only describes free propagation over a distance d1.

sbdA collection lens fT is located beyond the transparency
at a distance fT from the detection plane, so that the detection
plane coincides with that of the Fourier transform, and hence

h̃TsxT,qd ~ e−isld1/4pdq2t̃S− q −
2p

lfT
xTD . s44d

The optical scheme in the reference arm contains a lens sfo-
cal length fRd located at xl,R and thus the Fourier transform of

the impulse response functions can be written as

h̃RsxR,− qd ~E dxR8e
−iq·xR8E dxl,Re

isp/ld2dsxl,R − xR8d2e−isp/lfRdxl,R
2

eisp/ld3dsxl,R − xRd2

~ e−isld2/4pdq2E dxl,Re
−ifs2p/ld3dxR+qg·xl,Reisp/lds1/d3−1/fRdxl,R

2

. s45d

If fRÞd3, Eq. s45d becomes

h̃RsxR,− qd ~ e−isl/4pdfd2+1/s1/d3−1/fRdgq2e−si/d3df1/s1/d3−1/fRdgq·xR, s46d

while if fR=d3, Eq. s45d becomes

h̃RsxR,− qd ~ e−isld2/4pdq2dS 2p

ld3
xR + qD . s47d

Depending on the chosen geometrical configuration, these schemes allow realization of either a ghost-imaging or a ghost-

diffraction experiment f18g, as explained below.

A. Ghost imaging

To perform a ghost-imaging experiment we choose fRÞd3.

Let us first consider case sad. Substituting Eq. s43d and Eq. s46d into Eq. s42d yields the expression

Gs2dsxR,xTd ~ utsxTdu2Uo
q

Cqe
−iq·hxT+s1/d3df1/s1/d3−1/fRdgxRje−isl/2pdfsd1+d2d/s1/d3−1/fRdgf1/sd1+d2d+1/d3−1/fRgq2U2 . utsxTdu2uCqu2dSxT +

xR

M
D ,
s48d

which, once integrated over the bucket detector,

Gs2dsxRd =E dxTG
s2dsxR,xTd . UtS− xR

M
DU2uCqu2, s49d

gives the image of the object. Note that in passing from Eq. s48d to Eq. s49d we have assumed that Cq is virtually independent

of q. Moreover, we have chosen distances d1, d2, and d3 that satisfy the so-called “back-propagating thin lens equation,”

1 / sd1+d2d+1 /d3=1 / fR f19g, so that we obtain an imaging system with magnification factor M=d3 / sd1+d2d.
In case sbd, that is with a collection lens in the test arm that forms the Fourier transform on the detection plane, we proceed

similarly by substituting Eq. s44d and Eq. s46d into Eq. s42d and making the same assumption or choice as before and obtain

Gs2dsxR,xTd ~ Uo
q

Cqt̃S− q −
2p

lfT
xTDe−is1/d3df1/s1/d3−1/fRdgq·xRe−isl/2pdfsd1+d2d/s1/d3−1/fRdgf1/sd1+d2d+1/d3−1/fRgq2U2 . UtS− xR

M
DU2uCqu2,

s50d

INTENSITY CORRELATIONS, ENTANGLEMENT … PHYSICAL REVIEW A 76, 062309 s2007d

062309-7



which is independent of xT. Note that in this case to obtain

the image of the object it is not necessary to perform the

integration over the bucket detector; we only need to pick up

a single point in the Fourier plane, that is we select a single

Fourier component.

B. Ghost diffraction

To perform a ghost-diffraction experiment we consider

the configuration d3= fR and choose configuration sbd in the
test arm. By inserting Eq. s44d and Eq. s47d into Eq. s42d

Gs2dsxR,xTd ~ Uo
q

Cqt̃S− q −
2p

lfT
xTDe−isl/4pdsd1+d2dq

2

3dS 2p

ld3
xR − qDU2

. U t̃S− 2p

ld3
xR −

2p

lfT
xTDU2uCqu2. s51d

By selecting the Fourier component detected at xT=0 we get

Gs2dsxR,0d . U t̃S− 2p

ld3
xRDU2uCqu2, s52d

which gives the diffraction pattern of the object. Note that

the choice of a point different from xT=0, that is of a differ-

ent Fourier component, would imply a translation of the re-

covered diffraction pattern. For this reason a bucket detector,

which would perform an integration over the spatial Fourier

components, cannot be used. For the same reason also choos-

ing scheme sad would not give any result, as in this scheme
each point xT collects light from different spectral

components.

V. CONCLUSIONS AND OUTLOOKS

This paper was aimed at showing the possibility of per-

forming ghost imaging and ghost diffraction with a source

based on PDC seeded with MMT fields in both the T and R

arms, which generates a bipartite correlated state. Peculiar

properties of this source may open an insight into the under-

standing of the ghost-imaging–ghost-diffraction process. In

fact, nowadays the sources considered for ghost imaging and

diffraction were either definitely separable sclassically corre-
lated beams obtained from a MMT sourced or entangled
sspontaneous PDCd. On the contrary, here we proved that the
separable or entangled nature of the light produced by our

source can be controlled by changing the seed intensities and

that the transition from quantum to classical regimes does

not modify the possibility of realizing ghost-imaging

schemes.

Furthermore, we also showed that a ghost-imaging experi-

ment performed with our source satisfies the “back-

propagating” thin-lens equation, as much as with spontane-

ous PDC, even when the state produced becomes separable.

This is in contrast with the idea, also recently suggested

f7–9g, that the “back-propagating” thin-lens equation is con-
nected with the entangled nature of the spontaneous PDC.

According to the consideration above, we are planning to

realize a ghost-imaging experiment with a MMT seeded

PDC source in order to show that the same optical configu-

ration allows retrieval of the image irrespective of the en-

tangled or separable nature of the light produced by the

source. This will definitely substantiate our claim that the

“back-propagating” thin-lens equation is not a signature of

entanglement.
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