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We address the pair of conjugated field modes obtained from parametric down-conversion as a convenient

system to analyze the quantum-classical transition in the continuous variable regime. We explicitly evaluate

intensity correlations, two-mode antibunching, and entanglement for the system initially in a thermal state and

show that a hierarchy of nonclassicality thresholds naturally emerges in terms of thermal and down-conversion

photon number. We show that the transition from quantum to classical regime may be tuned by controlling the

intensities of the seeds and detected by intensity measurements, even in the case of the transition between

separability and entanglement. Besides, we show that the thresholds are not affected by losses, which only

modify the amount of nonclassicality. The multimode case is also analyzed in some detail.
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I. INTRODUCTION

The boundary between quantum and classical physics has

been controversial f1–9g ever since the early days of quan-
tum mechanics. Nevertheless, the solution to this problem is

very important for several fundamental issues in quantum

and atomic optics and, more generally, in quantum measure-

ment theory f10,11g. More recently, with the development of
quantum technology, the issue gained new interest since non-

classical features, especially squeezing and entanglement,

represent practical resources to improve quantum measure-

ments and information processing.

As a matter of fact, quantum decoherence, i.e., the dy-

namical suppression of quantum interference effects, cannot

be the unique criterion to define a classical limit f12g, which
should emerge from an operational approach suitably linked

to measurement schemes f13–29g. Few years ago f30g para-
metric down-conversion sPDCd has been addressed as a con-
venient setting to visualize the quantum to classical transi-

tion at the single-mode single-photon level and witness, by

tomographic measurements, the change from the spontane-

ous to the stimulated regimes of light emission. Here we deal

with the richer structure of bipartite systems and address the

pair of field modes obtained from thermally seeded PDC as a

convenient physical system to analyze the quantum-classical

transition in the continuous variable regime. This scheme has

been already investigated in ghost imaging and ghost diffrac-

tion experiments f31–33g, where it has been shown that both
entanglement and intensity correlations may be tuned upon

changing the intensities of the seeds f32g and monitored by
intensity measurements. In turn, this puts forward the PDC

output as a natural candidate to investigate the quantum-

classical transitions in an experimentally feasible configura-

tion. Here we focus on some relevant parameters employed

to point out the appearance of quantum features, namely,

sub-shot-noise correlations, two-mode antibunching, and en-

tanglement. We analyze the different nonclassicality thresh-

olds at varying the mean photon numbers of the interacting

fields. Remarkably, the corresponding transitions from clas-

sical to quantum domain may be observed experimentally by

means of intensity measurements, thus avoiding full state

reconstruction by homodyne or other phase-sensitive tech-

niques f34,35g.
The paper is structured as follows. In the next section we

review the PDC process, establish notation, and introduce

the nonclassicality parameters we are going to analyze. In

Sec. III we analyze the effect of losses, whereas in Sec. IV

we discuss the generalization of our analysis to the multi-

mode case. Finally, Sec. V closes the paper with some con-

cluding remarks.
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II. PARAMETRIC DOWNCONVERSION

WITH THERMAL SEEDS

The evolution of a pair of field modes under PDC within

the undepleted pump approximation is described by the uni-

tary operator Uk=expsika1a2+H.c.d, where k is the coupling
constant and a j are the mode operators sj=1,2d. In the fol-
lowing, we consider the two modes initially in a thermal

state, i.e., excited in a factorized thermal state n=n1^ n2,
n j=on=0

` p jsndunl j jknu being a single-mode thermal state with
m j mean number of photons, i.e., p jsnd=m j

ns1+m jd
−sn+1d. The

density matrix at the output is given by ̺k=UknUk
†, whereas

the output modes are given by A j=Uk
†a jUk=aa j+e

iwba
j8

†

swith j=1,2 and jÞ j8d, where a=coshuku, b=sinhuku, and w
is the coupling si.e., pumpd phase. The statistics of the two
output modes, taken separately, are those of a thermal state

f32g, i.e., kn jl=m j+mks1+m1+m2d, kDn j
2l= kn jlskn jl+1d,

where n j=a j
†a j and mk=sinh

2uku is the mean number of pho-
tons due to spontaneous PDC; the symbols k . . . l and D de-

note kOl=TrfO̺g and DO=O− kOl, respectively. Notice that
the case of vacuum inputs, n= u0lk0u1^ u0lk0u2, corresponds
to spontaneous down-conversion, i.e., to the generation of

the so-called pure twin-beam state sTWBd ukckll=Uku0l
=a−1onsb /adnunl ^ unl f36g.

A. Intensity correlations

The shot-noise limit sSNLd in a photodetection process is
defined as the lowest level of noise that can be achieved by

using semiclassical states of light f37–39g that is Glauber
coherent states. On the other hand, when a noise level below

the SNL is observed, we have a genuine nonclassical effect.

For a two-mode system, if one measures the photon number

of the two beams and evaluates the difference photocurrent

H=n1−n2 the SNL is the lower bound to the fluctuations

kDH2l that is achievable with classically coherent beams, i.e.,
kDH2l= kn1l+ kn2l.
Let us consider a simple measurement scheme where the

modes at the output of the PDC crystal are individually mea-

sured by direct detection and the resulting photocurrents are

subtracted from each other to build the difference photocur-

rent. We have quantum noise reduction, i.e., violation of the

SNL, when kDH2l, kn1l+ kn2l, that is f32g

m1
2 + m2

2 , 2mks1 + m1 + m2d . s1d

In order to quantify intensity correlations and to evaluate the

amount of violation of the SNL, we introduce the parameter

gc = 1 −
kDH2l

kn1l + kn2l
. s2d

The value gc=0 corresponds to noise at the SNL, whereas

the presence of nonclassical intensity correlations leads to

0,gc#1. For the pair of modes at the output of the PDC
crystal, we obtain

gc =
2mks1 + m1 + m2d − m1

2 − m2
2

2mks1 + m1 + m2d + m1 + m2
. s3d

The maximal violation of SNL is achieved by the TWB state

sm1=m2=0d, while upon increasing the intensity of at least

one of the seeding fields, the SNL is eventually reached. The

condition gc.0 has a clear operational meaning. In fact,
only by operating below the shot-noise limit differential

quantum imaging can be performed having advantages with

respect to a classical imaging procedure f40,41g. Hence, gc

.0 gives the condition for which a subtraction of correlated
noise leads to an advantage in realizing imaging of a weak

object.

B. Two-mode antibunching

The nonclassical behavior of a set of light modes has been

often related to the negativity of the Glauber-Sudarshan P

function, which, in turn, prevents the description of the sys-

tems as a classical statistical ensemble. Here, in order to

quantify negativity in terms of the photon number distribu-

tion, we employ the criterion introduced by Lee f42,43g,
which quantifies the amount of antibunching in the inter-

mode correlations and represents the two-mode generaliza-

tion of the Mandel’s criterion of nonclassicality f44g for
single-mode beams. Lee’ two-mode antibunching, in turn,

implies the negativity of the P function. According to

f42,43g, a bipartite system shows nonclassical behavior if the
inequality

kn1sn1 − 1dl + kn2sn2 − 1dl − 2kn1n2l , 0 s4d

is satisfied. For the PDC output state, the condition in Eq. s4d
corresponds to m1

2+m2
2−m1m2,mks1+m1+m2d. As we did in

the case of intensity correlations, we define a parameter

quantifying the amount of two-mode antibunching

gn = 1 −
kDH2l + skn1l − kn2ld

2

kn1l + kn2l
. s5d

We have 0,gn#1, with gn=1 corresponding to maximum

nonclassicality. For the PDC output state, we obtain

gn = 2
mks1 + m1 + m2d − m1

2 − m2
2 + m1m2

2mks1 + m1 + m2d + m1 + m2
. s6d

Again the most nonclassical state is the TWB state sm1=m2
=0d, whereas by increasing the intensity of at least one of the
seeding field, the positive P-function region is eventually

reached. Notice that for a two-mode field, the presence of

intensity correlations is independent of the photon bunching

properties. This is an interesting and often-neglected point.

Indeed, the results of this section and the previous one indi-

cate that nonclassical correlations may be found also without

two-mode antibunching, which represents a stricter condition

of nonclassicality. Moreover, two-mode antibunching is a

sufficient condition for negativity ssingularityd of the two-
mode P function, a feature that cannot be directly observed

experimentally.

C. Entanglement

The PDC process provides pairwise entanglement in the

two modes. In the spontaneous process, the output state is

entangled for any value of mkÞ0, whereas for thermally

seeded PDC, the degree of entanglement crucially depends
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on the intensity of the seeding fields f32g. For a bipartite
Gaussian state, entanglement is equivalent to the positivity

under partial transposition sPPTd condition f45g, which may
be written in terms of the smallest partially transposed sym-

plectic eigenvalue. Thus, seeded PDC produces an entangled

output state if and only if f32g

m1m2 − mks1 + m1 + m2d $ 0. s7d

Remarkably, entanglement properties of the state ̺k can be

verified by intensity measurements independently performed

on the two modes. In fact, with an ideal detection system, the

inequality

kDH2l − skn1l − kn2ld
2 # kn1l + kn2l s8d

reproduces exactly the entanglement condition in Eq. s7d.
Therefore, the amount of the violation of the separability

boundary may be quantified by means of the parameter

ge = 1 −
kDH2l − skn1l − kn2ld

2

kn1l + kn2l
, s9d

where ge=0 corresponds to the boundary between separable

and entangled states. For the PDC output ̺k, we obtain

ge = 2
mks1 + m1 + m2d − m1m2

2mks1 + m1 + m2d + m1 + m2
. s10d

Maximally entangled states sge=1d thus correspond to the
TWB sm1=m2=0d, whereas entanglement is degraded in the
presence of thermal seeds. Notice, however, that if one of the

two modes at the input is the vacuum, the state is always

entangled irrespective of the intensity of the other seeds. The

condition 0,ge,1 has a clear operational interpretation in
terms of teleportation fidelity for coherent states. Indeed, a

fidelity larger than the classical threshold Fcl=1 /2 may be

obtained safter optimization over local operationsd if and
only if the shared state used to support teleportation shows a

nonzero entanglement f46g. Our analysis shows that for the
bipartite states obtained by seeded PDC, the possible use as

teleportation support may be checked by intensity measure-

ments.

In Fig. 1 we show the nonclassicality regions in terms of

the seeding, m j, j=1,2, and down-conversion, mk, mean pho-

ton numbers, i.e., the triples sm1 ,m2 ,mkd for which the pa-
rameters g lie in the interval 0,g#1. As it is apparent from
the plot, a hierarchy of nonclassicality concepts and thresh-

olds naturally appears. The most stringent criterion of non-

classicality corresponds to two-mode antibunching, followed

by sub-shot-noise intensity correlations and then by en-

tanglement.

We can express the thresholds for the appearance of non-

classicality as conditions on the mean number of photons

resulting from the down-conversion process

gn = 0→ mk
n =

m1
2 + m2

2 − m1m2

1 + m1 + m2
, s11d

gc = 0→ mk
c =

m1
2 + m2

2

2s1 + m1 + m2d
, s12d

ge = 0→ mk
e =

m1m2

1 + m1 + m2
. s13d

In other words, being negative nonclassical is a sufficient

condition to have sub-shot-noise intensity correlation. More-

over, either of the two stwo-mode antibunching and sub-shot-
noised is a sufficient condition for entanglement, i.e., mk

c

.mk
n.mk

e for any value of m1 and m2. Remarkably, the three
nonclassicality conditions collapse into a single one when

the seeding intensities are equal m1=m2 and differ by terms
up to the second order in um1−m2u in the neighborhood of this
condition. It is already evident in Fig. 1, as well as in Fig. 2,

where we show the three parameters as function of the seed-

ing intensities for different values of mk, that the stronger the

spontaneous PDC slarge mkd is, the larger is the number of
thermal photons that can be injected while preserving two-

mode antibunching and hence sub-shot-noise correlations

and entanglement.

III. EFFECT OF LOSSES

In order to see whether the nonclassicality thresholds

identified in the previous section may be investigated experi-

mentally, one should take into account losses occurring dur-

ing propagation, which generally degrade quantum features,

and nonunit quantum efficiency in the detection stage, which

may prevent the demonstration of nonclassicality. The two

mechanisms may be subsumed by an overall loss factor t
f47,48g using a beam splitter model f49,50g in which the
signal enters one port and the second one is left unexcited.

Upon tracing out the second mode, we describe the loss of

photons during the propagation and the detection stage. In

FIG. 1. sColor onlined Nonclassicality regions, i.e., regions for
which 0,g,1, in terms of m1, m2, and mk for the three g param-

eters presented in the text. As it is apparent from the plot, a hierar-

chy of regions and bounds appears. The wider region fgreen slight
grayd +red sdark grayd +blue ssemitransparent grayd regionsg iden-
tifies the values of the m’s leading to an entangled output s0,ge

,1d from the PDC. The intermediate fgreen slight grayd +red sdark
grayd regionsg corresponds to nonclassical intensity correlations
s0,gc,1d, whereas the narrower internal region fgreen slight
grayd regiong is for two-mode antibunching s0,gn,1d.
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the following, we assume equal transmission factor for the

two channels and evaluate the nonclassicality parameters in

the presence of losses.

Upon assuming that dark counts have been already sub-

tracted, the positive operator-valued measure sPOVMd of
each detector is given by a Bernoullian convolution of the

ideal number operator spectral measure. The moments of the

distribution are evaluated by means of the operators

N jst,pd =o
n=0

`

s1 − tdnG jsp,ndunlknu , s14d

where G jsp ,nd=om=0
n s n

m ds t

1−t dmmp. Of course, since N jst ,pd
are operatorial moments of a POVM, in general, we have

N jst ,pdÞN jst ,1dp, with the first two moments given by

N jst,1d = tn j , s15d

N jst,2d = t2n j
2 + ts1 − tdn j . s16d

Upon inserting the above expressions in the nonclassicality

parameters fi.e., replacing n j and n j
2 by N jst ,1d and N jst ,2d,

respectivelyg, we obtain that, for all of them, the inclusion of
losses results in a simple rescaling

gistd = tgist = 1d i = c,n,e . s17d

In other words, the effect of losses is that of decreasing the

amount of nonclassicality, whereas the thresholds for the

quantum-classical transitions are left unaffected. This also

means that the twin-beam still corresponds to the maximal

violation of classicality condition independently of the kind

of nonclassicality parameter we are taking into account.

These are shown in Fig. 3, where the parameters g for t
=0.5 are compared to those in ideal condition for a fixed

value of the PDC gain.

IV. MULTIMODE CASE

The squantumd correlations introduced by the PDC pro-
cess are intrinsically pairwise and thus no qualitative differ-

ences should be expected when considering the multimode

case. On the other hand, the expression of the parameters g
does depend on the number of modes and thus it is worth

explicitly addressing the multimode case f32g. Besides, from
the experimental point of view, this is a situation often en-

countered in traveling-wave PDC pumped by pulsed lasers.

The evolution operator for the multimode case can be

rewritten in terms of the operators Sj= skja1,ja2,j+H.c.d as
UM=^j=1

M eiSj, thus emphasizing the pairwise structure. In

our analysis we focus on the case in which all the modes are

seeded with uncorrelated multimode thermal fields with m j,j

mean photon number per mode

nM = ^

j=1

M

sn1,j ^ n2,jd n j,j =o
n=0

`

p j,jsndunl j,jj,jknu ,

where j=1,2. The density matrix at the output is thus given

by

(b)(a)

(c)

FIG. 2. sColor onlined Nonclassicality parameters gc, gn, and ge evaluated for mk=0.3 fyellow slowerd surfaceg and mk=1 fsemitrans-
parent gray supperd surfaceg as a function of m1 and m2.
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̺M = UMnMUM
† = ^

j
feiSjsn1,j ^ n2,jde

−iSjg , s18d

and the calculation for each pair of coupled modes is com-

pletely analogous to that performed in Sec. I ssee also f32gd.
The Heisenberg evolution of modes is

A j,j = UM
†
a j,jUM = aja j,j + e

iwjbja j8,j
† sj, j8 = 1,2, j Þ j8d ,

s19d

where aj=coshukju and bj=sinhukju. The spontaneous PDC
energy for each pair of modes is mk,j=sinh

2ukju. In this case,
the number of photons measured in each arm is n j=ojn j,j,

with n j,j=a j,j
† a j,jsj=1,2d. The quantities relevant to our

analysis are the mean photon values kn jl=ojkn j,jl and the
variances of the difference photocurrent H=ojHj, Hj=n1,j
−n2,j. Since correlations are only pairwise, we have

kn j,jn j8,j8l= kn j,jlkn j8,j8l when jÞj8 and thus

kDH2l =o
j

kDHj
2l . s20d

Using this result, the extension to the multimode case for

intensity correlations is straightforward and the violation of

the SNL in Eq. s1d can be rewritten as

o
j

skDHj
2l − kn1,jl − kn2,jld , 0. s21d

If we assume that each mode of the seeding thermal fields in

the j arm sj=1,2d has the same mean photon number, m j,j

=m j, and that the parametric gain is the same for each pair of

coupled mode, mk,j=mk, the condition for the violation of the

SNL in the multimode case is the same as for the single-

mode seeds. The same is true in presence of losses, upon

assuming equal transmission factor t for the modes, as it can
also easily seen by inspecting Eq. s21d. On the other hand,
for the two-mode antibunching, as expressed by Eq. s5d, the
extension to the multimode case is not possible since its

derivation is explicitly based on the assumption of a single

pair of down-converted modes f42,43g.
Finally, the separability condition for the multimode ther-

mally seeded PDC has already been analyzed f32g and it has
been demonstrated that the separability properties of state

̺M may be checked by intensity measurements on the two

arms, though not for a generic multimode field. An interest-

ing case is when each mode of the seeding thermal fields in

the j arm sj=1,2d has the same mean number of photons,
m j,j=m j, and the parametric gain is the same for each pair of

coupled modes, mk,j=mk. In this case, the entanglement con-

dition is still given by Eq. s7d and it is possible to reveal
entanglement of the state rM by means of direct photon

counting measurements on 1 and 2 arms exploiting the in-

equality

kDH2l −
skn1l − kn2ld

2

N
# kn1l + kn2l , s22d

which is almost equal to Eq. s8d except for the second term
where the number of modes N appears. In fact, by starting

from Eq. s21d and substituting the multimode expression of
n1 and n2, it can easily be proved that Eq. s22d leads to the
entanglement condition in Eq. s7d. As it has already been
demonstrated f32g that the boundary between separability

(b)(a)

(c)

FIG. 3. sColor onlined Nonclassicality parameters gc, gn, and ge evaluated for t=0.5 fyellow slowerd surfaceg and in the absence of losses
ft=1, semitransparent gray supperd surfaceg as a function of m1 and m2, with mk=0.3.
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and entanglement is not modified by presence of losses, it is

straightforward to prove that Eq. s22d still holds.

V. CONCLUSIONS AND OUTLOOKS

In this paper we have addressed the quantum-classical

transition for the radiation field in the continuous variable

regime. We have analyzed in detail the pair of conjugated

field modes obtained from parametric down-conversion and

explicitly evaluated intensity correlations, two-mode anti-

bunching, and entanglement for the system seeded by radia-

tion in a thermal state. Our results have shown that a hierar-

chy of nonclassicality thresholds naturally emerges in terms

of thermal and down-conversion photon number and that the

transition from quantum to classical regime may be tuned by

controlling the seed intensities. In turn, the different thresh-

olds have clear operational meanings in terms of resolution

in imaging, teleportation fidelity, and photon antibunching.

The quantum-classical thresholds derived in this paper have

two features that make them appealing for an experimental

verification: sid they are not affected by losses, which only
modify the amount of violation; siid they can be verified by
intensity measurements, without phase-dependent measure-

ments and full state reconstruction. According to Fig. 1, in

order to appreciate the differences among the criteria dis-

cussed above, the fields should contain a non-negligible

number of photons coming both from the PDC process and

from the seeds. We plan to generate such states by

frequency-degenerate, noncollinear, traveling-wave PDC

pumped by a high-energy pulsed laser f51g. In the experi-

ment, we should take advantage of the fact that mk can be

reasonably high and bring the nonclassicality parameters to

interesting regions. Tens of photons are expected from the

process that may be measured by a pair of linear photodetec-

tors with internal gain sphotomultipliers or hybrid photode-
tectorsd as described in f52g. Besides, as an alternative to
conventional crystals, a periodically poled nonlinear wave-

guide medium and cw laser may be employed, aiming at the

production of inherently single-mode sfrequencyd nondegen-
erate PDC light. Extension to the tripartite case f53–63g is
also in progress and results will be reported elsewhere. No-

tice that the presence of a hierarchy of nonclassicality thresh-

olds as well as the possibility of detecting the separability-

entanglement transition by means of intensity measurements

are peculiar of the class of states obtainable from a PDC

source seeded by phase-insensitive fields. Our system, where

the seeding fields are given by thermal states, belongs to the

above class and is both interesting in principle and feasible

in practice. Notice also that when a PDC source is seeded

with phase-sensitive sGaussiand states, it is possible to obtain
separable states with sub-shot-noise behavior f64g, in viola-
tion of the hierarchy here assessed for thermal seeds.
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