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In a macroscopic realm, in which photons are too many to be counted by any photon-counting detector,

photon statistics can be measured by using detectors simply endowed with linear response. We insert one of

such detectors in a conventional photon-counting apparatus, which returns a voltage every time the detector

responds to light by generating a number of elementary charges via its primary photodetection process. We

only assume that, when a single charge is photogenerated, the probability density of the voltages is a distri-

bution that is narrow with respect to its mean value. Under this hypothesis the output voltages can be suitably

binned so that their probability distribution is the same as that of the photogenerated charges, that is, of the

detected photons.
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I. INTRODUCTION

Measuring photon statistics is a useful approach in under-

standing the behavior of any system that includes electro-

magnetic radiation as a part. The investigation of such sys-

tems may pertain to physics, from astronomy to physics of

matter f1g, as well as to other natural sciences, for instance
biology f2g. The availability of photon-counting detectors
and methods suitable for any situation such as to the spectral

and intensity characteristics of the light to be measured

would then be extremely desirable. The coverage of the most

different spectral ranges is a goal that is pursued by the

search of novel primary photodetection processes, including

thermal processes occurring at cryogenic temperatures.

Among the detectors that operate, in essence, as microcalo-

rimeters, we mention a superconducting transition-edge sen-

sor sTESd with tungsten as the active device material that
was recently demonstrated to work as a photon counter en-

dowed with almost unitary quantum efficiency from uv over

the visible to telecom wavelengths f3g. However, we recog-
nize that detectors based on quantum interactions between

photons and sensitive material are largely used more than

thermal detectors for measuring photon statistics. Detectors

based on either external primary processes se.g., electron
photoemissiond or internal primary processes se.g., photoge-
neration of carriers by either photovoltaic or photoconduc-

tive effectsd ensure reasonable values of the detection quan-
tum efficiency hq in the visible and near-ir spectral ranges.

The main difficulty that still remains with these detectors is

that of measuring photon statistics when the charges photo-

generated in the samples are too many to be counted. Among

photoemissive detectors only few produce distinct outputs

when the number of photoelectrons m changes by a unit. The

best ones are photomultiplier tubes sPMTsd f4,5g and hybrid
photodetectors sHPDsd f5g that can count up to m<5. Rela-
tively more numerous are the photoemissive detectors that

are endowed with sufficiently high and sharp gain to provide
a sizeable charge in the anodic pulse output for m$1 that is
definitely distinguished from that for m=0. There are PMTs
available since the 1950s that were used for the first mea-
surements of light statistics f6–9g. Nowadays single-photon
detectors exist that are based on the most different primary
photodetection processes and offer a remedy to the lack of
good photon counters. In fact, the light to be measured can
be split either in space or in time prior to detection so that at
most one photon at a time hits the detector sensitive area.
However it must be recognized that these techniques in-
vented for counting photons with intensified charge-coupled
device cameras f10g, and multipixel and/or position sensitive
single-photon detectors f11–14g sspatial splittingd or single-
photon avalanche photodiodes stemporal splittingd f15,16g
are rather cumbersome. Their adoption is only justified by
the impossibility of performing direct measurements with
photon counters when the number of detected photons be-
comes macroscopic.
The work described here concerns the direct measurement

of the detected-photon statistical distribution Pm and is mo-
tivated by the fact that, in many of the systems for which

measuring photon statistics is relevant, artificially lowering

m is not permitted either by attenuating the light or by short-

ening the measuring time TM. This is the case for fields that

modify their properties upon attenuation and, obviously, for

pulse fields in which TM cannot be shorter than the light

pulse duration. It is worth noting that measuring photon sta-

tistics when m$1 in TM is a problem that has been faced

since the 1960s. In particular Arecchi et al. f17g suggested a
“linear method” in which the PMT anodic charge corre-

sponding to the photons detected in TM was recorded. More-

over these authors demonstrated that calculating the mo-

ments of the statistical distribution of this charge and those

of the single-electron response sSERd distribution allows ob-
taining of the moments of Pm. Such a result has been used to

verify the agreement with the theoretical Pm moments up to

second order f18g. However, using it to recover Pm would be

at least cumbersome owing to the need of accurate evalua-

tions of SER distribution moments at any order. We will*alessandra.andreoni@uninsubria.it
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show that any detector based on either an internal or an ex-

ternal primary photodetection process and endowed with two

properties rather commonly encountered allow measuring Pm

in a macroscopic realm in which photon counters do not

exist. The two properties are as follows: sid the detector re-
sponse must be linear up to the maximum m of the measure-

ment, and siid the response for m=1 must produce a standard
deviation of the output data that is sufficiently smaller than

the mean value. We further specify that the detector can be

endowed with an internal gain.

II. MODEL

With the help of Fig. 1 we first examine how the detector

output is processed in a typical direct statistical measure-

ment. Normally it is amplified and integrated over a temporal

gate, whose duration fixes the value of the measure time TM
when a continuous-wave light is to be measured. In the case

of pulsed light, the gate is synchronous and covers the TM
interval in which the current output pulse of the detector

occurs. The signal is sampled and digitized afterward and

converted to a voltage v.

As indicated in the figure, we represent the overall m-to-v
conversion by a single factor g. Here we will explicitly take

into account the statistical distribution of the probability den-

sity pg of this conversion factor. The left-hand side of Fig. 1

illustrates the link between the probability density of detect-

ing m photons, Pm, and that, Pn, of having n photons in the

field. Considering the effects of the optics that delivers the

light to the detector and that of the detector quantum effi-

ciency hq,1, and representing these concomitant losses by

an overall photon-detection efficiency h lead to f19g

Pm = o
n=m

+` S n
m
Dhms1 − hdn−mPn. s1d

Obviously in any experiment the value of h is up limited by

the product of hq times the coupling efficiency of the optical

delivery system but can be diminished at will if filters are

inserted into the system that delivers the light to the detector.

We point out that, as we deal with direct statistical measure-

ments, neither the delivery optics includes a fiber looping

beam splitter nor the detector is a position sensitive one.

Our aim is to recover Pm for an arbitrary Pn starting from

the only experimental data available, which are the v voltage

values recorded for an ensemble of measurements performed

with given h by using an apparatus characterized by a con-

version factor g with probability distribution pg, mean value

ḡ, and variance s2. In the following we indicate by P
v
the

probability density of the v variable. We assess that we can

“measure” P
v
as the distribution that we would obtain by

casting the experimental v values of an ensemble of mea-

surements into a histogram normalized to its integral. For

ease of writing we represent the bin width by dv although the

variable v is our digitized output. The zero of the v scale of

the “measured” P
v
is set to be equal to the mean value of the

distribution recorded in a separate experiment performed in

the absence of light. As the events of having different values

of detected photons si.e., elementary charges generated by
the primary photodetection processd are mutually exclusive,
we can write

P
v
= Pm=0Pv

s0d + Pm=1Pv

s1d + Pm=2Pv

s2d + ¯ =o
k=0

+`

Pm=kPv

skd,

s2d

in which P
v

skd is defined as the probability density of the

voltage values v
skd that are recorded in the events with k

detected photons. In Eq. s2d, P
v

s0d is the probability distribu-

tion measured in the absence of light, for which we remind

that e−`
`

vP
v

s0ddv=0. We note that P
v
obviously reproduces Pm

if the measuring apparatus has photon-counting capability

f4,5g whereas, when the P
v

skd’s do not lead to separate peaks

in P
v
, Eq. s2d seems to be useless to reconstruct Pm. The

latter is exactly the case examined in this paper.

We consider the central moments mrsvd= ksv− kvldrl cor-
responding to the experimental P

v
and try to relate them to

the mrsmd= ksm− kmldrl central moments corresponding to
the unknown Pm probability density. By using properties of

the P
v

skd distributions to express mrsvd, we will find relations
to mrsmd that provide a method to reconstruct Pm. As Pv

s1d can

be identified with the probability distribution pg of the con-

version factor g, we obviously have v
s1d=g. Owing to the

hypothesis that the detector response is linear, detecting

k.1 elementary charges corresponds to the occurrence of

independent events, thus v
skd=oi=1

k gi, in which all gi are dis-

tributed according to pg, and Pv

skd=P
v

s1d
*Pv

s1d
*¯ *Pv

s1d for k

times. Thus we can exploit the following property of the

cumulants f19g:

k
r

So
i=1

k

giD
=o

i=1

k

kr
sgid. s3d

By reminding that the lowest-order cumulants are k1
sxd= kxl,

k2
sxd=m2sxd, k3

sxd=m3sxd, k4
sxd=m4sxd−3fm2sxdg2, and k5

sxd

=m5sxd−10m2sxdm3sxd, for the cumulants of the conversion/
amplification factor we find: k1

sgid= ḡ, k2
sgid=s2, k3

sgid= m̃3,

k4
sgid= m̃4−3s4, and k5

sgid= m̃5−10s
2m̃3, with m̃r as the values

assumed for the central moments of pg.

We start by using Eq. s3d with r=1 and then Eq. s2d to
calculate the mean value of v,

kvl = ḡo
k=0

+`

kPm=k = kmlḡ . s4d

We now calculate the mrsvd moments by applying Eq. s2d,

FIG. 1. sColor onlined Measuring apparatus.
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mrsvd =o
k=0

+`

Pm=kE
−`

+`

sv − kvldrP
v

skddv =o
k=0

+`

Pm=kmrsv
skdd ,

s5d

where we used mrsv
skdd;e−`

+`sv− kvldrP
v

skddv.

For r=1 Eq. s5d obviously vanishes. For r$2 we make

use of the binomial expansion

sv − kvldr =o
j=0

r Sr
j
Dv

js− kvldr−j , s6d

which, once substituted into Eq. s5d and using Eq. s4d, gives

mrsvd =o
j=0

r Sr
j
Ds− kmlḡdr−jo

k=0

+`

Pm=km j8sv
skdd . s7d

In Eq. s7d the “prime” distinguishes the moments from the

central moments. The recursion formula that relates the mo-

ments to the cumulants f20g in our case reads

m j8sv
skdd = k j

svskdd +o
s=1

j−1 S j − 1
s − 1

Dks
svskdd

m j−s8 svskdd , s8d

from which it can be shown that the jth order moment

m j8sv
skdd is a polynomial of the first j cumulants, ks

svskdd with

s=1,2 , . . . , j. Thus in Eq. s8d,

m18sv
skdd = k1

svskdd,

m28sv
skdd = k2

svskdd + sk1
svskddd2,

m38sv
skdd = k3

svskdd + 3k2
svskdd

k1
svskdd + sk1

svskddd3,

m48sv
skdd = k4

svskdd + 4k3
svskdd

k1
svskdd + 3sk2

svskddd2

+ 6k2
svskddsk1

svskddd2 + sk1
svskddd4,

m58sv
skdd = k5

svskdd + 5k4
svskdd

k1
svskdd + 10k3

svskdd
k2

svskdd

+ 10k3
svskddsk1

svskddd2 + 15sk2
svskddd2k1

svskdd

+ 10k2
svskddsk1

svskddd3 + sk1
svskddd5,

m68sv
skdd = . . . ,

where the coefficients of the different terms are those that

occur in the Faà di Bruno’s formula. By using Eq. s3d we can
rewrite these terms in the form

m18sv
skdd = kk1

sgid,

m28sv
skdd = kk2

sgid + k2sk1
sgidd2,

m38sv
skdd = kk3

sgid + 3k2k2
sgidk1

sgid + k3sk1
sgidd3,

m48sv
skdd = kk4

sgid + 4k2k3
sgidk1

sgid + 3k2sk2
sgidd2

+ 6k3k2
sgidsk1

sgidd2 + k4sk1
sgidd4,

m58sv
skdd = kk5

sgid + 5k2k4
sgidk1

sgid + 10k2k3
sgidk2

sgid

+ 10k3k3
sgidsk1

sgidd2 + 15k3sk2
sgidd2k1

sgid

+ 10k4k2
sgidsk1

sgidd3 + k5sk1
sgidd5,

m68sv
skdd = . . . ,

in which k is the number of detected photons, each one con-

verted with its own gisi=1,2 , . . . ,kd, and the cumulants are
those of the probability distribution pg. We observe that each

term contains a product of cumulants in which the sum of the

indices is the order of the moment.

Let us assume a narrow pg distribution so that s2 / ḡ2

→0. In terms of cumulants this rewrites k2
sgid=ofsk1

sgidd2g.
Under this hypothesis also m̃3 / ḡ3→0, that is, k3

sgid

=ofsk1
sgidd3g, as we can write m̃3 / ḡ3= sm̃3 /s3dss3 / ḡ3d, where

the first factor is the sfinited coefficient of skewness of the
distribution pg. Actually it can be easily shown that k j

sgid

=ofsk1
sgidd jg relations hold for any j$2, if k2

sgid=ofsk1
sgidd2g.

Taking into account that the number of detected photons k is

a finite number, all the monomials in the above expressions

of the moments are negligible with respect to the last one so

that we can approximate ms8sv
skdd>kssk1

sgidds=ksḡs. By substi-

tuting in Eq. s7d we get

mrsvd =o
j=0

r Sr
j
Ds− kmlḡdr−jo

k=0

+`

Pm=kk
jḡ j

= ḡro
k=0

+`

Pm=ko
j=0

r

Sr
j
Dk js− kmldr−j

= ḡro
k=0

+`

Pm=ksk − kmldr = ḡrmrsmd . s9d

Note that, as mrsmd never vanishes, even in the case of light
in a single-mode Fock state because of the nonunit quantum

efficiency of the detectors, actually Eq. s9d holds for mea-
surements performed on optical fields with any statistics.

Dividing both members of Eq. s9d by kvl yields

mrsvd

kvl
= ḡr−1

mrsmd

kml
, s10d

while the exact results for r=2 and r=3 would be

m2svd

kvl
= ḡFm2smd

kml
+

s2

ḡ2
G , s11d

m3svd

kvl
= ḡ2Fm3smd

kml
+ 3

m2smd

kml

s2

ḡ2
+

m̃3

ḡ3
G , s12d

respectively.

We thus assess that, when detector and processing elec-

tronics ensure a sufficiently small ratio s / ḡ, the scaling law

in Eq. s10d holds and the simple knowledge of ḡ allows

reconstructing Pm. In fact binning the v data of a measure-

ment into bins of width ḡ produces a distribution P
v
identical

to Pm. Alternatively we can say that Pm is recovered by di-

viding the v data by ḡ and then rebinning the new values into

unitary bins.

PHOTON STATISTICS IN THE MACROSCOPIC REALM… PHYSICAL REVIEW A 80, 013819 s2009d

013819-3



How do we determine ḡ when s! ḡ has been already

shown f5g. Here we demonstrate that, for a detector simply
endowed with linear response, we can both determine ḡ and

decide on the negligibility of s with respect to ḡ.

At this point, for the first time in this work, we make use

of Eq. s1d. Such a link between the Pm and Pn distributions

gives kml=hknl and km2l=h2kn2l+hs1−hdknl. Thus we find
f5g

m2smd

kml
= hQ + 1, s13d

where Q= fm2snd− knlg / knl is the Mandel parameter of the
light entering the experimental apparatus in Fig. 1 and con-

taining knl photons in the TM time interval f19g. Substituting
Eq. s13d into Eq. s10d and taking into account Eq. s4d yield

m2svd

kvl
=

Q

knl
kvl + ḡS1 + s2

ḡ2
D , s14d

in which Q / knl is independent of h. On the other hand, kvl
depends on h, which can be changed by acting on the light

delivery optics: h can be set at any value between the prod-

uct of hq times the coupling efficiency of the optical delivery

system and zero by adding filter into the system that delivers

the light to the detector. Thus by repeated measurements of

the same light at different h, we can verify the linear depen-

dence on kvl in Eq. s14d. The experimental m2svd / kvl data
plotted as a function of kvl should align along a straight line,
whose intercept reduces to ḡ if s2 / ḡ2!1. Knowing ḡ allows

proceeding to the rebinning of the v data that leads to the

reconstruction of Pm. Experimental applications to some

nontrivial classical states are described in Refs. f5,21,22g.

III. DISCUSSION

The assessment that an experimental apparatus has a s / ḡ

ratio that is sufficiently small for the validity of Eq. s10d
deserves some comments, owing to the difficulty of knowing

ḡ and s separately.

We first observe that for any photoemissive detector s

decreases at increasing the strength of the electric field ex-

perienced by the photoelectrons as soon as they leave the

cathode. For a PMT in which the internal gain is provided by

multidynode cascade amplification, increasing the voltage

difference between cathode and first dynode produces

smaller s values. For PMTs in which the electron amplifica-

tion is provided by other structures se.g., microchannel plate,
metal channels, etc.d, the same effect is obtained by acting on
the voltage of the accelerating electrode. For a HPD, in

which the electrons released by the photocathode are multi-

plied by a reverse biased avalanche diode, s is lowered by

applying greater negative high voltages to the photocathode.

In the case of PMTs, modifying the voltage partition to

change s brings about a change in ḡ that cannot be easily

compensated by acting on the overall voltage applied be-

tween anode and cathode. In the case of HPDs this compen-

sation is feasible by adjusting the avalanche diode reverse

bias voltage. However in any electronic apparatus that pro-

cesses the detector output, there is a step that allows chang-

ing ḡ by a known factor se.g., in Fig. 1: both amplifier gain
and analog-to-digital converter scaled while keeping s / ḡ vir-

tually constant.

The expression of the intercept in Eq. s14d is such that,
upon changing ḡ by a known factor but not s / ḡ, a new

series of measurements at different h values would provide a

new evaluation of the intercept, whose value should scale by

the same factor. On the contrary, for constant ḡ and different

s / ḡ ratios, the intercept should change differently. Note that

a check of the constancy of ḡ is provided by Eq. s4d in which
s does not appear. If, by manipulating the voltages supplied

to PMT or HPD detectors as described to change s, we

achieve a situation of constant and minimum intercept, we

have proven that s2 / ḡ2!1 in Eq. s14d. We can thus use this
limit value of the intercept as the correct ḡ to rebin the ex-

perimental P
v
distribution and reconstruct Pm. If the kml

value provided by the reconstructed Pm fits Eq. s4d, it means
that the detector guarantees a s2 / ḡ2 not only much smaller

than one but small enough for the validity of Eq. s10d.
We finally note that the above described verifications of

the validity of Eq. s10d are self-consistent in that they do not
require measuring pg to establish the relation between s2 and

ḡ2. This is a definite advantage with respect to any potential

method for Pm reconstruction based on the determination of

the pg moments f17g.

IV. CONCLUSIONS

We have shown that for any linear detector we can both

measure ḡ and determine if s / ḡ is sufficiently small for

taking as reliable the Pm reconstruction achieved by binning

the experimental v values into bins of width ḡ. For the

method to work it is necessary that the m range where Pm is

non-negligible falls within the linearity range of the appara-

tus, which must be broad enough for a satisfactory verifica-

tion of Eq. s14d. In forthcoming papers we will show that our
method works not only with HPDs f5,21g and the Burle 8850
PMT f4,5g but also with detectors such as Si multipixel pho-
ton detectors f23g and more PMTs endowed with single-
photon sensitivity. Useful detectors might also be solid-state

detectors such as avalanche photodiodes in the linear ampli-

fication regime f24g. By the way, some photon-number res-
olution is being demonstrated for these detectors, in particu-

lar if connected to charge-integration readout circuits with

sufficiently low noise f25g. At last, for a thermal detector
such as a TES, obtaining a s value sufficiently smaller than

ḡ would be a minimal performance as compared to the ex-

cellent photon-number resolving power demonstrated by Lita

et al. f3g, up to seven detected photons, and might allow
using a less sophisticated apparatus.

We think that the results described in this paper will

broaden the choice of detectors suitable for measuring pho-

ton statistics. The essential requirement for the detector, be-

side that of the linearity of the response, is the smallness of

the ratio s2 / ḡ2, which can be ascertained ssee aboved with-
out measuring pg. The fact that the method applies to mea-

surements in the macroscopic realm may turn out to be
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relevant in all cases in which one cannot attenuate the light

to bring the photon-detection rate down to the regime where

photon counters operate. As examples we mention fields pro-

duced by events either rare or unstable and, more impor-

tantly, all nonclassical fields, where our method risks being

the only one applicable to macroscopic fields.
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