34,080 research outputs found

    A Fast, Numerical Circuit-Level Model of Carbon Nanotube Transistor

    No full text
    Recently proposed circuit-level models of carbon nanotube transistor (CNT) for SPICE-like simulators suffer from numerical complexities as they rely on numerical evaluation of integrals or internal Newton-Raphson iterations to find solutions of non-linear dependencies or both. Recently an approach has been proposed which eliminates the need for numerical integration when calculating the charge densities in CNTFET through the use of piece-wise linear approximation. This paper builds on the effective employment of linear approximation to accelerate the CNT model speed when evaluating the source-drain current of the CNT, but rather than using symbolic solutions as reported, we propose to employ a numerical linearization of charge density dependence on the self-consistent voltage to obtain a dramatic reduction in the CPU time. Our results show a speed up of up to almost four orders of magnitude compared with the theoretical CNT model implemented in FETToy, used as a reference for verifying newer models. Comparisons of drain-source current characteristics of the new model against that in FETToy are presented, confirming the accuracy of the proposed approach

    Duality between Feature Selection and Data Clustering

    Full text link
    The feature-selection problem is formulated from an information-theoretic perspective. We show that the problem can be efficiently solved by an extension of the recently proposed info-clustering paradigm. This reveals the fundamental duality between feature selection and data clustering,which is a consequence of the more general duality between the principal partition and the principal lattice of partitions in combinatorial optimization

    HSPICE implementation of a numerically efficient model of CNT transistor

    No full text
    This paper presents the algorithms of an implementation of a numerically efficient carbon nanotube transistor (CNT) model in HSPICE. The model is derived from cubic spline non-linear approximation of the non-equilibrium mobile charge density. The spline algorithm exploits a rapid and accurate solution of the numerical relationship between the charge density and the self-consistent voltage, which results in the acceleration of deriving the current through the channel without losing much accuracy. The output I-V characteristics of the proposed model have been compared with those of a recent HSPICE implementation of the Stanford CNT model and published experimental I-V curves. The results show superior accuracy of the proposed model while maintaining similar CPU time performance. Two versions of the HSPICE macromodel implementation have been developed and validated, one to reflect ballistic transport only and another with non-ballistic effects. To further validate the model a complementary logic inverter has also been implemented using the proposed technique and simulated in HSPICE

    Contextual Sensitivity in Grounded Theory: The Role of Pilot Studies

    Get PDF
    Grounded Theory is an established methodological approach for context specific inductive theory building. The grounded nature of the methodology refers to these specific contexts from which emergent propositions are drawn. Thus, any grounded theory study requires not only theoretical sensitivity, but also a good insight on how to design the research in the human activity systems to be studied. The lack of this insight may result in inefficient theoretical sampling or even erroneous purposeful sampling. These problems would not necessarily be critical, as it could be argued that through the elliptical process that characterizes grounded theory, remedial loops would always bring the researcher to the core of the theory. However, these elliptical remedial processes can take very long periods of time and result in catastrophic delays in research projects. As a strategy, this paper discusses, contrasts and compares the use of pilot studies in four different grounded theory projects. Each pilot brought different insights about the context, resulting in changes of focus, guidance to improve data collection instruments and informing theoretical sampling. Additionally, as all four projects were undertaken by researchers with little experience of inductive approaches in general and grounded theory in particular, the pilot studies also served the purpose of training in interviewing, relating to interviewees, memoing, constant comparison and coding. This last outcome of the pilot study was actually not planned initially, but revealed itself to be a crucial success factor in the running of the projects. The paper concludes with a theoretical proposition for the concept of contextual sensitivity and for the inclusion of the pilot study in grounded theory research designs

    A meter band rate mechanism to improve the native QoS capability of OpenFlow and OpenDaylight

    Get PDF
    The exponential growth of mobile connected devices with advanced multimedia features imposes a requirement to enhance quality of service (QoS) from heterogeneous systems and networks. In order to satisfy mission-critical multimedia QoS requirements new generation mobile networks must present content-optimized mechanisms in order to use valuable network resources efficiently and provide QoS requirements for each application. This research explores a novel solution for quality of service performance for streaming mission-critical video data in OpenFlow SDN networks. A Meter Band Rate Evaluator (MBE) Mechanism is proposed based on a new band rate description language to improve the native QoS capability of OpenFlow and OpenDaylight. Its design and development are presented and the mechanism is verified through a simulated experiment in an SDN testbed. The results revealed a significant percentage increase in QoS performance when the MBE was enabled. These findings provide support and validation for the effectiveness of the MBE to enhance the native capability of OpenFlow and OpenDaylight for efficient QoS provision

    The structure relaxation of carbon nanotube

    Full text link
    A simple macroscopic continuum elasticity theory (CET) is used to calculate the structure relaxation of single-wall carbon nanotube (SWNT), an analytic formula is obtained. We also expand an atomic scale three-parameter empirical model [ T. Lenosky {\emph et al.} Nature 355, 333(1992)] in order to correctly describe the bond-length change effects. The structure relaxation of SWNT expected by the model is good in agreement with our CET results, and very well consistent with the previous calculation from a first principles local density function approximation. Using the expanded Lenosky model, we calculate the strain energy of bending tube. The obtained results are good in agreement with the previous theoretical expectation. It shows the model may be a good simple replacement of some more sophisticated methods on determining carbon networks deformations.Comment: 9 pages, 4 eps figure

    A sub-critical barrier thickness normally-off AlGaN/GaN MOS-HEMT

    Get PDF
    A new high-performance normally-off gallium nitride (GaN)-based metal-oxide-semiconductor high electron mobility transistor that employs an ultrathin subcritical 3 nm thick aluminium gallium nitride (Al0.25Ga0.75N) barrier layer and relies on an induced two-dimensional electron gas for operation is presented. Single finger devices were fabricated using 10 and 20 nm plasma-enhanced chemical vapor-deposited silicon dioxide (SiO2) as the gate dielectric. They demonstrated threshold voltages (Vth) of 3 and 2 V, and very high maximum drain currents (IDSmax) of over 450 and 650 mA/mm, at a gate voltage (VGS) of 6 V, respectively. The proposed device is seen as a building block for future power electronic devices, specifically as the driven device in the cascode configuration that employs GaN-based enhancement-mode and depletion-mode devices
    corecore