39,866 research outputs found

    Secure Communication for Spatially Sparse Millimeter-Wave Massive MIMO Channels via Hybrid Precoding

    Get PDF
    In this paper, we investigate secure communication over sparse millimeter-wave (mm-Wave) massive multiple-input multiple-output (MIMO) channels by exploiting the spatial sparsity of legitimate user's channel. We propose a secure communication scheme in which information data is precoded onto dominant angle components of the sparse channel through a limited number of radio-frequency (RF) chains, while artificial noise (AN) is broadcast over the remaining nondominant angles interfering only with the eavesdropper with a high probability. It is shown that the channel sparsity plays a fundamental role analogous to secret keys in achieving secure communication. Hence, by defining two statistical measures of the channel sparsity, we analytically characterize its impact on secrecy rate. In particular, a substantial improvement on secrecy rate can be obtained by the proposed scheme due to the uncertainty, i.e., 'entropy', introduced by the channel sparsity which is unknown to the eavesdropper. It is revealed that sparsity in the power domain can always contribute to the secrecy rate. In contrast, in the angle domain, there exists an optimal level of sparsity that maximizes the secrecy rate. The effectiveness of the proposed scheme and derived results are verified by numerical simulations

    Discrete orthogonal polynomials and difference equations of several variables

    Get PDF
    The goal of this work is to characterize all second order difference operators of several variables that have discrete orthogonal polynomials as eigenfunctions. Under some mild assumptions, we give a complete solution of the problem.Comment: minor typos correcte

    Low Complexity Blind Equalization for OFDM Systems with General Constellations

    Get PDF
    This paper proposes a low-complexity algorithm for blind equalization of data in OFDM-based wireless systems with general constellations. The proposed algorithm is able to recover data even when the channel changes on a symbol-by-symbol basis, making it suitable for fast fading channels. The proposed algorithm does not require any statistical information of the channel and thus does not suffer from latency normally associated with blind methods. We also demonstrate how to reduce the complexity of the algorithm, which becomes especially low at high SNR. Specifically, we show that in the high SNR regime, the number of operations is of the order O(LN), where L is the cyclic prefix length and N is the total number of subcarriers. Simulation results confirm the favorable performance of our algorithm

    Measuring Efficiency of Public Higher Education Using DEA Model for Sichuan in China

    Get PDF
    This study uses Data Envelopment Analysis (DEA) and the Malmquist method to investigate efficiency in Sichuan Province’s public undergraduate universities by employing a dynamic unbalanced panel data approach and Refining input-output indicators through the application of the Factorial Component Analysis (FCA) method. We find average comprehensive efficiency (0.6601), pure technical efficiency (0.8562), scale efficiency (0.7723), and total factor productivity progress (0.932) for 27 institutions from 2018 to 2022. Despite the increased investment, efficiency gains are modest. Hierarchical correlation with input-output efficiency is noted, and total factor productivity shows an upward trend influenced by financial resources and economies of scale. These findings provide insights for university administrators and policymakers to address inefficiencies and optimize education resources for sustainable development

    A sub-critical barrier thickness normally-off AlGaN/GaN MOS-HEMT

    Get PDF
    A new high-performance normally-off gallium nitride (GaN)-based metal-oxide-semiconductor high electron mobility transistor that employs an ultrathin subcritical 3 nm thick aluminium gallium nitride (Al0.25Ga0.75N) barrier layer and relies on an induced two-dimensional electron gas for operation is presented. Single finger devices were fabricated using 10 and 20 nm plasma-enhanced chemical vapor-deposited silicon dioxide (SiO2) as the gate dielectric. They demonstrated threshold voltages (Vth) of 3 and 2 V, and very high maximum drain currents (IDSmax) of over 450 and 650 mA/mm, at a gate voltage (VGS) of 6 V, respectively. The proposed device is seen as a building block for future power electronic devices, specifically as the driven device in the cascode configuration that employs GaN-based enhancement-mode and depletion-mode devices

    Architecture of androgen receptor pathways amplifying glucagon-like peptide-1 insulinotropic action in male pancreatic β cells

    Get PDF
    Male mice lacking the androgen receptor (AR) in pancreatic β cells exhibit blunted glucose-stimulated insulin secretion (GSIS), leading to hyperglycemia. Testosterone activates an extranuclear AR in β cells to amplify glucagon-like peptide-1 (GLP-1) insulinotropic action. Here, we examined the architecture of AR targets that regulate GLP-1 insulinotropic action in male β cells. Testosterone cooperates with GLP-1 to enhance cAMP production at the plasma membrane and endosomes via: (1) increased mitochondrial production of C
    • …
    corecore