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Abstract

The goal of this work is to characterize all second order difference operators of several variables that
have discrete orthogonal polynomials as eigenfunctions. Under some mild assumptions, we give a complete
solution of the problem.
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1. Introduction

The goal of this study is to characterize all second order difference equations of several vari-
ables that have discrete orthogonal polynomials as eigenfunctions. More precisely, we consider
difference operators of the form

D =
∑

1�i,j�d

Ai,j�i∇j +
d∑

i=1

Bi�i + CI,

where �i and ∇i are the forward and backward operator in the direction of the ith coordinate
of R

d , respectively, I is the identity operator, Ai,j , Bi and C are functions of x ∈ R
d . The

discrete orthogonal polynomials in our consideration are polynomials that are orthogonal with
respect to an inner product of the form

〈f,g〉 =
∑
x∈V

f (x)g(x)W(x),

where V is a lattice set in R
d and W is some positive weight function on V . There is a close cor-

relation between D, W and V . Some restrictions need to be imposed on V due to the complexity
of the geometry in higher dimensions. Under some mild and, we believe, reasonable assumptions
on V , we give a complete solution of the problem.

For d = 1, the one-dimensional case, the classification problem was studied by several authors
early in the last century, we refer to [1,6] for references. It was found that the classical discrete
orthogonal polynomials, namely, Hahn polynomials, Meixner polynomials, Krawtchouk polyno-
mials, and Charlier polynomials are eigenfunctions of second order difference operators on the
real line, and these are believed to be the only ones that have such property. To our great surprise,
however, another family of solutions turns up when we analyze the problem carefully. The dif-
ference equation satisfied by this family of solutions is similar to that of Hahn polynomials but
the parameters need to be chosen in a different way. In other words, the difference equation has
two separate families of solutions when the parameters are chosen differently.

The same phenomenon also appears in the case of two variables. The second order difference
equations that have orthogonal polynomials as eigenfunctions were identified in [12], but not
all families of orthogonal polynomials were found. In fact, viewing it as an analogue of second
order differential operators that have orthogonal polynomials as eigenfunctions, only one family
of solutions that had been known in the literature was identified for each difference equation.
The solutions of difference equations, however, turn out to be far richer than that of differential
equations. For example, in the case of quadratic eigenvalues, only Hahn polynomials on the set
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V = {(x, y): x � 0, y � 0, x + y � N} are identified in [12]; there are in fact several other
families, including orthogonal polynomials on N

2
0, on V = {(x, y): 0 � x � N1, 0 � y � N2},

and several others. This will be shown in the present paper.
We start with identifying difference operators D that are self-adjoint with respect to the inner

product 〈·,·〉. This leads to compatibility conditions between the coefficients of the operator D.
The requirement that the difference equations have polynomial solutions and some mild restric-
tions on V reduce the coefficients of D to special simple forms, which allows us to use the
compatibility conditions to determine the coefficients of the difference operator. A careful analy-
sis of the result determines all possible solutions. It is well known that orthogonal bases in several
variables are not unique [2]. For each solution, we give a family of mutually orthogonal polyno-
mials explicitly and compute their norm; in other words, we give a family of orthonormal basis
explicitly.

It should be mentioned that the analysis in several variables is by no means a straightforward
extension of analysis in one or two variables. The complexity of the problem increases substan-
tially as the dimension grows. For example, the number of solutions grows exponentially with
the dimension, and the geometry of the admissible lattice sets becomes more involved as the di-
mension increases. Although our approach resembles the one used in [12], several new ideas are
introduced to resolve various outstanding problems. The study in this paper is also much more
systematic and thorough, as demonstrated by the new results obtained even in the case of d = 2
and by the new family of discrete orthogonal polynomials of one variable.

The paper is organized as follows. The self-adjoint operators are treated in Section 2, where
the compatibility conditions are derived. In Section 3, we study difference equations that have
polynomial solutions, called admissible equations, and show that the eigenvalues of such equa-
tions are either a quadratic polynomial or a linear polynomial of the index, and the coefficients of
such equations need to have certain simple forms under some mild restrictions on V . The com-
patibility conditions can then be used to determine the coefficients, thus D, explicitly. The case
of one variable is discussed in Section 4, in which the new family of discrete orthogonal poly-
nomials is treated in details. For several variables, the case of quadratic eigenvalues is studied in
Section 5 and the case of linear eigenvalues is developed in Section 6.

2. Self-adjoint difference operators

In this section we discuss the basic properties of self-adjoint second order difference operators
with respect to an inner product defined on a discrete set. We start with some notations.

Let V be a subset of R
d and let W :V → R be a positive function. Consider the inner product

defined by the weight W as follows

〈f,g〉 =
∑
x∈V

f (x)g(x)W(x), (2.1)

for functions f,g : Rd → R. We will be mainly interested in the case when f (x) and g(x) are
polynomials of x ∈ R

d , but the general discussion in this section does not depend essentially on
the class of functions. Denote by {e1, e2, . . . , ed} the standard basis for R

d . We denote by Ei , �i

and ∇i , respectively, the customary shift, forward and backward difference operators acting on a
function f (x) as follows

Eif (x) = f (x + ei),
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�if (x) = f (x + ei) − f (x) = (Ei − I)f (x),

∇if (x) = f (x) − f (x − ei) = (
I − E−1

i

)
f (x),

where I is the identity operator.
We will consider second order difference operators of the form

D =
∑

1�i,j�d

Ai,j�i∇j +
d∑

i=1

Bi�i + CI, (2.2)

where Ai,j , Bi and C are some functions of x. Immediately from the definition one can see that
D can also be rewritten as

D =
∑

1�i �=j�d

αi,jEiE
−1
j +

d∑
i=1

βiEi +
d∑

i=1

γiE
−1
i + δI, (2.3)

where the new coefficients αi,j , βi , γi and δ are related to the old ones via the formulas

αi,j = −Ai,j for 1 � i �= j � d, (2.4)

βi =
d∑

k=1

Ai,k + Bi for 1 � i � d, (2.5)

γi =
d∑

k=1

Ak,i, (2.6)

δ = C −
∑

1�i �=j�d

Ai,j −
d∑

i=1

(2Ai,i + Bi). (2.7)

The representation (2.2) will be more convenient when we deal with polynomials, because the
operators �i and ∇i decrease the total degree of a polynomial by one. However, necessary and
sufficient conditions for an operator D to be self-adjoint with respect to the inner product (2.1)
are much simpler and natural if we write it as in (2.3). Formulas (2.4)–(2.7) allow us to go easily
from one representation to another.

Let us define “directional” boundaries of V as follows:

∂±
j V = {x ∈ V : x ± ej /∈ V } for j = 1,2, . . . , d,

∂i,jV = {x ∈ V : x + ei − ej /∈ V } for 1 � i �= j � d.

Example 2.1. Let N0 denote the set of all nonnegative integers. For the set V = N
d
0 we have

∂−
j V = ∂i,jV = V ∩ {x: xj = 0} and ∂+

j V = ∅ for j = 1,2, . . . , d and i �= j .
Other sets that play crucial role later are listed below

V d
l = {

x ∈ N
d
0 : xi � li for i = 1,2, . . . , d

}
, (2.8a)
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where li are positive integers;

V d
N = {

x ∈ N
d
0 : x1 + x2 + · · · + xd � N

}
, (2.8b)

where N is a positive integer;

V d
N,S = V d

N

⋂
i∈S

{x: x � li for i ∈ S}, (2.8c)

where S is a nonempty subset of {1,2, . . . , d} and li are integers such that 1 � li � N .
For example, for the parallelepiped V d

l we have ∂−
j V d

l = V d
l ∩ {x: xj = 0}, ∂+

j V d
l = V d

l ∩
{x: xj = lj } and ∂i,jV

d
l = ∂−

j V d
l ∪ ∂+

i V d
l .

For V d
N defined by (2.8b) we have ∂−

j V d
N = ∂i,jV

d
N = V d

l ∩ {x: xj = 0}, and ∂+
j V d

N = V d
l ∩

{x: x1 + x2 + · · · + xd = N}.

The next proposition characterizes the self-adjoint operators with respect to the inner prod-
uct (2.1) in terms of their coefficients.

Proposition 2.2. The operator D is self-adjoint with respect to the inner product (2.1), if and
only if

W(x)γi(x) = W(x − ei)βi(x − ei), x, x − ei ∈ V, (2.9)

W(x − ei)αi,j (x − ei) = W(x − ej )αj,i (x − ej ), x − ei, x − ej ∈ V, j �= i, (2.10)

and

γj (x) = 0, x ∈ ∂−
j V , (2.11a)

βj (x) = 0, x ∈ ∂+
j V , (2.11b)

αi,j (x) = 0, x ∈ ∂i,jV , i �= j. (2.11c)

Proof. Using {x + ei − ej : x ∈ V \ ∂i,jV } = V \ ∂j,iV and changing the summation index we
see that〈

αi,jEiE
−1
j u, v

〉 = ∑
x∈∂i,j V

αi,j (x)u(x + ei − ej )v(x)W(x)

+
∑

x∈V \∂j,iV

αi,j (x + ej − ei)u(x)v(x + ej − ei)W(x + ej − ei).

Writing similar equalities for 〈βiEiu, v〉 and 〈γiE
−1
i u, v〉, using {x ± ei : x ∈ V \ ∂±

i V } =
V \ ∂∓

i V , and comparing 〈Du,v〉 with 〈u,Dv〉 gives the stated conditions. �
As an immediate corollary from the relations established above we can deduce compatibility

conditions that need to be satisfied by the coefficients of the operator D.
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Corollary 2.3 (Compatibility conditions). If the operator D is self-adjoint with respect to the
inner product defined by (2.1) then for 1 � i �= j � d we have

αi,j (x − ei)βj (x − ej )γi(x) = αj,i(x − ej )βi(x − ei)γj (x), (2.12a)

for x, x − ei, x − ej ∈ V and

βi(x − ei)βj (x − ei − ej )γj (x)γi(x − ej )

= βj (x − ej )βi(x − ei − ej )γi(x)γj (x − ei), (2.12b)

for x, x − ei, x − ej , x − ei − ej ∈ V .

Proof. Writing

W(x − ej )

W(x − ei)
= W(x − ej )

W(x)

W(x)

W(x − ei)

and using (2.10) on the left side and (2.9) for the right side we obtain (2.12a). Similarly if we use
(2.9) for all ratios in the identity

W(x)

W(x − ei)

W(x − ei)

W(x − ei − ej )
= W(x)

W(x − ej )

W(x − ej )

W(x − ei − ej )
,

we get (2.12b), which completes the proof. �
Remark 2.4. The compatibility conditions stated above can be easily extended to more general
difference operators. For example, we can consider the operator D̃ that adds two additional terms
EiEj and E−1

i E−1
j in the operator D in (2.3). However, the complexity of the computations in

the sections below will increase significantly even with these two terms added. Furthermore,
since � = ∇ + ∇�, the operator D̃ includes the 4th order term �1∇1�2∇2 (say, d = 2) which
is the discrete analog of ∂2

1 ∂2
2 , where ∂i stands for the partial derivative with respect to xi . Classi-

fying orthogonal polynomials that are eigenfunctions of D̃ appears to be an interesting but much
harder problem.

3. Admissible equations and orthogonal polynomials

In this section we study difference operators D that have discrete orthogonal polynomials
as eigenfunctions. For more details on the general theory of discrete orthogonal polynomials of
several variables we refer the reader to [11].

Throughout the paper we use the standard multi-index notation. A multi-index will be denoted
by μ = (μ1,μ2, . . . ,μd) ∈ N

d
0 . For each μ we denote by xμ the monomial

xμ = x
μ1
1 x

μ2
2 · · ·xμd

d

of total degree |μ| = μ1 + μ2 + · · · + μd . The degree of a polynomial is defined as the highest
degree of its monomials. We denote by R[x] = R[x1, x2, . . . , xd ] the space of all polynomials in
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the variables x1, x2, . . . , xd and by Πd
n the subspace of polynomials of degree at most n in the

variables {x1, x2, . . . , xd}. The latter has dimension dim(Πd
n ) = (

n+d
n

)
.

Let V be an at most countable set of isolated points in R
d and let |V | denote the cardinality

of V . If 〈f,g〉 = 0 for the inner product defined by (2.1), we say that f and g are orthogonal
with respect to W on the set V . Orthogonal polynomials on V depend on the structure of the
ideal

I(V ) = {
p ∈ R[x1, x2, . . . , xd ]: p(x) = 0 for every x ∈ V

}
.

In fact, the orthogonal polynomials belong to the space

R[V ] = R[x1, x2, . . . , xd ]/I(V ).

There is a lattice set Λ(V ) such that every polynomial in R[V ] can be written as

P(x) =
∑

μ∈Λ(V )

cμxμ.

The lattice set is not uniquely determined by V . However, in all cases that arise here, there is a
natural way to identify V and Λ(V ), see Example 3.1. Denote Λk(V ) = {μ ∈ Λ(V ): |μ| = k}
and let rk be the number of the elements in the set Λk(V ).

Example 3.1. It is clear that for V = N
d
0 we have I(Nd

0) = (0) and therefore R[Nd
0 ] = R[x]. For

all other sets defined in Example 2.1 one can easily find (inductively on d and |V |) explicit sets
of generators of the ideal I(V ). In particular, the generators listed below allow us to identify
Λ(V ) and V .

For V d
l , defined by (2.8a), the ideal I(V d

l ) is generated by the set

Gd
l = {

(−x1)l1+1, (−x2)l2+1, . . . , (−xd)ld+1
}
.

For V d
N , given by (2.8b), the ideal I(V d

N) is generated by the set

Gd
N = {

(−x1)μ1(−x2)μ2 · · · (−xd)μd
: |μ| = N + 1

}
.

Finally, for V d
N,S in (2.8c), the corresponding ideal is generated by

Gd
N,S = Gd

N ∪ {
(−xi)li+1: i ∈ S

}
.

Next we want to consider difference operators D on the space R[V ]. In order to have a proper
action of D on R[V ] the ideal I(V ) must be D-invariant, i.e.

D
(
I(V )

) ⊂ I(V ).

One can easily show that if D is self-adjoint with respect to the inner product (2.1), then the
above condition is satisfied. More precisely, we have the following proposition.
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Proposition 3.2. If the operator D, written in the form (2.3), satisfies conditions (2.11) then the
ideal I(V ) is D-invariant.

Proof. Notice that if a polynomial p(x) vanishes on V , then the polynomial p(x − ej ) will
vanish on V \ ∂−

j V . Thus, if p(x) ∈ I(V ) and (2.11a) holds then γj (x)p(x − ej ) ∈ I(V ), i.e.

the operator γjE
−1
j preserves I(V ). Similar arguments show that (2.11b) (respectively (2.11c))

implies that βjEj (respectively αi,jEiE
−1
j ) preserves I(V ), which completes the proof. �

Definition 3.3. Let I(V ) be D-invariant. The equation

Du = λu (3.1)

is called admissible on V if for any k ∈ N0 there is a number λk such that the equation Du = λku

has rk linearly independent polynomial solutions in R[V ] and it has no nontrivial solutions in the
set of polynomials of degree less than k.

Remark 3.4. Notice that if (3.1) is admissible on V and if we have nontrivial solutions of the
equations Du = λku and Du = λlu for distinct integers k, l ∈ N0 then λk �= λl . Thus if D is
also a self-adjoint operator with respect to the inner product (2.1), the polynomial solutions for
Du = λku and Du = λlu will be mutually orthogonal.

From now on, we will assume that λ0 = 0 (which is equivalent to C = 0 for operators D of the
form (2.2)). This is not a real restriction on D since one can replace D by D − λ0I if necessary.

The next proposition shows that we can pick linearly independent polynomial solutions in
such a way that the highest terms contain single monomials.

Proposition 3.5. Equation (3.1) is admissible on V if and only if for each k ∈ N0 there exists a
number λk such that the equation Du = λku has rk linearly independent polynomial solutions of
the form

Pμ(x) = xμ mod Πd
k−1. (3.2)

The proof of Proposition 3.5 follows easily form Definition 3.3, see [12] in the case d = 2.

Remark 3.6. If D is an admissible operator on V we can trivially extend it to an admissible
operator on the set V ′ = {(x,0): x ∈ V } ⊂ R

d+1. When we classify the possible admissible
operators, we will exclude such degenerate situations.

The next proposition essentially characterizes the admissible difference operators of the
form (2.2). In order to eliminate several singular cases we will assume that μ ∈ Λ(V ) for
|μ| = 1,2,3. Instead of putting μ ∈ Λ(V ) for |μ| = 3 we can require that 3ei ∈ Λ(V ) for some
i ∈ {1,2, . . . , d} and for all 1 � i �= j � d at least one of {2ei + ej , ei + 2ej } belongs to Λ(V ),
but this would make the statement of the theorem long and awkward.

Theorem 3.7. Assume that μ ∈ Λ(V ) for |μ| = 1,2,3. Let D be a second order difference opera-
tor defined by (2.2) such that I(V ) is D-invariant. Then the following conditions are equivalent:
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(i) The equation Du = λu is admissible;
(ii) The coefficients Bi(x) are polynomials of degree at most 1, and Ai,j (x) are polynomials of

degree at most 2 satisfying

Bi = bxi mod Πd
0 for i = 1,2, . . . , d, (3.3a)

Ai,i = ax2
i mod Πd

1 for i = 1,2, . . . , d, (3.3b)

Ai,j + Aj,i = 2axixj mod Πd
1 for 1 � i �= j � d (3.3c)

for some constants a and b. The eigenvalues λk must be distinct and they are given by

λk = k(ka − a + b). (3.4)

Proof. Assume first that the equation Du = λu is admissible. Applying Proposition 3.5 we see
that there exist polynomials

Pei
(x) = xi mod Πd

0

satisfying

Du = λ1u. (3.5)

Notice that �jPei
= δi,j and �j∇kPei

= 0 for all j, k = 1,2, . . . , d . Thus DPei
= Bi(x) and

the last equation shows that formula (3.3a) holds, where we put b = λ1. Similarly, we can find
polynomials of the form

P2ei
(x) = x2

i mod Πd
1 (3.6)

satisfying

Du = λ2u. (3.7)

This time we have �jP2ei
= 2xiδi,j mod Πd

0 and �j∇kP2ei
= 2δi,j δi,k . Using now (3.3a) we

see that

DP2ei
= 2Ai,i + 2bx2

i mod Πd
1 ,

which, combined with (3.6) and (3.7), shows that

Ai,i = λ2 − 2b

2
x2
i mod Πd

1 ,

thus proving (3.3b) if we denote a = (λ2 − 2b)/2.
Next, for i �= j we take a polynomial of the form

Pei+ej
(x) = xixj mod Πd

1
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satisfying (3.7). A simple computation as above gives that

DPei+ej
= Ai,j + Aj,i + 2bxixj mod Πd

1 ,

which combined with (3.7) shows that (3.3c) holds. It remains to show that Ai,j are polynomials
of degree at most 2 and that (3.4) holds. First we use a polynomial of the form

P3ei
= x3

i mod Πd
2

for some i satisfying

Du = λ3u, (3.8)

to show that (3.4) holds for k = 3. Indeed, we already know that if P is a polynomial of degree at
most 2, D(P ) will also be a polynomial of degree at most 2 (because we can write it as a linear
combination of 1, Pei

, Pei+ej
, for i, j = 1,2, . . . , d). Thus D(P3ei

) = D(x3
i ) mod Πd

2 . On the
other hand

D
(
x3
i

) = 6xiAi,i + (
3x2

i + 3xi + 1
)
Bi = (6a + 3b)x3

i mod Πd
2 ,

where in the last equality we used (3.3a) and (3.3b). Comparing now the coefficients of x3
i on

both sides in (3.8), we see that λ3 = 6a + 3b, which is exactly (3.4) for k = 3.
Next we consider the solution to Eq. (3.8) of the form

P2ei+ej
(x) = x2

i xj mod Πd
2

for i �= j . Again D(P2ei+ej
) = D(x2

i xj ) mod Πd
2 , but this time

D
(
x2
i xj

) = (2xi + 1)Ai,j + (2xi − 1)Aj,i + 2xjAi,i + (2xi + 1)xjBi + x2
i Bj

= 2xi(Ai,j + Aj,i) + Ai,j − Aj,i + 2xjAi,i + 2xixjBi + x2
i Bj mod Πd

2

= (6a + 3b)x2
i xj + Ai,j − Aj,i mod Πd

2

= λ3x
2
i xj + Ai,j − Aj,i mod Πd

2 ,

upon using (3.3) and λ3 = 6a + 3b. Equation (3.8) shows that Ai,j − Aj,i = 0 mod Πd
2 , which

combined with (3.3c) proves that Ai,j and Aj,i are polynomials of degree at most 2. Finally, let
μ ∈ Λ(V ) such that |μ| = k and let

Pμ = xμ mod Πd
k−1

be a solution to

Du = λku. (3.9)

The admissibility implies that D(u) = D(xμ) mod Πd . Notice that
k−1
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�ix
μ = μix

μ−ei mod Πd
k−2 for all i, (3.10a)

�i∇j x
μ = μiμjx

μ−ei−ej mod Πd
k−3 for i �= j, (3.10b)

�i∇ix
μ = μi(μi − 1)xμ−2ei mod Πd

k−3 for all i (3.10c)

and therefore

D
(
xμ

) =
∑

1�i<j�d

μiμjx
μ−ei−ej (Ai,j + Aj,i) +

d∑
i=1

μi(μi − 1)xμ−2ei Ai,i

+
d∑

i=1

μix
μ−ei Bi mod Πd

k−1

= xμ

(
2a

∑
1�i<j�d

μiμj + a

d∑
i=1

μi(μi − 1) + b

d∑
i=1

μi

)
mod Πd

k−1

= |μ|(a|μ| − a + b
)
xμ mod Πd

k−1, (3.11)

which combined with (3.9) gives (3.4).
Conversely, assume that (ii) holds. One can easily show by induction on |μ| that for μ ∈ N

d

there exist polynomials of the form

Pμ(x) = xμ +
∑

|ν|<|μ|
cμ,νPν(x) (3.12)

satisfying (3.9) with eigenvalue λ|μ| given by (3.4). Indeed, let us assume that this is true for
|μ| � k − 1 and take μ such that |μ| = k. Using computation (3.11) we see that

D
(
xμ

) = λ|μ|xμ +
∑

|ν|<|μ|
γμ,νPν(x),

for some constants γμ,ν . Then

D(Pμ) − λ|μ|Pμ =
∑

|ν|<|μ|

(
cμ,ν(λ|ν| − λ|μ|) + γμ,ν

)
Pν,

i.e. if we pick cμ,ν = −γμ,ν/(λ|ν| − λ|μ|) the polynomial Pμ defined by (3.12) will satisfy (3.9).
Thus, in the quotient space R[V ] we have rk polynomials of total degree k satisfying (3.9). �

In the next sections we will use conditions (3.3) and the compatibility conditions (2.11) and
(2.12) to determine the possible self-adjoint operators on appropriate sets V .

Since the difference equation Du = λu is invariant under translations x → x + h, we can
consider the difference equations modulo translations.

In the rest of the paper we will impose certain boundary conditions on the difference oper-
ator D. More precisely, we will assume that for every j the coefficients Ai,j (x) vanish on the
hyperplane {x: xj = 0}. Roughly speaking, this means that V has sufficiently many boundary
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points belonging to {x: xj = 0}. We show below, that if a �= 0 and if V has “enough” points on
its boundary then, up to a translation, this must be true.

Let us denote by ∂jV = ∂−
j V

⋂
i �=j ∂i,jV the “lower” j th boundary of V . We say that V has a

nontrivial boundary if for every j = 1,2, . . . , d , ∂jV contains more than 2d points and that these
points do not belong to a variety of dimension less than d − 1. For example, a line in d = 2 is a
nontrivial boundary, so is a plane in d = 3.

Proposition 3.8. Let V be a discrete set with a nontrivial boundary and let D be an admissible,
self-adjoint operator. If a �= 0, then after an appropriate translation, ∂jV becomes a subset of
{x: xj = 0} and the coefficients Ai,j (x) vanish on {x: xj = 0}.

Proof. Using the fact that D is self-adjoint, Proposition 2.2, (2.4) and (2.6) we see that

Ai,j (x) = 0, x ∈ ∂jV for 1 � j � d.

Applying Bezout’s theorem for polynomials in d variables [7, Chapter IV, Section 2] for the
polynomials A1,j (x), . . . ,Ad,j (x) which satisfy (3.3b)–(3.3c) and vanish on ∂jV , one concludes
that they must contain a common linear factor. Equation (3.3b) shows that this factor must be of
the form xj −hj . Thus, applying the translation x → x +h with h = (h1, h2, . . . , hd), Ai,j takes
the form

Ai,j (x) = xj × (linear polynomial in x1, x2, . . . , xd), (3.13)

and completes the proof. �
The compatibility conditions also imply that Ai,j − Aj,i ∈ Πd

1 for i �= j , which combined
with (3.3c) shows that Ai,j = axixj mod Πd

1 (the argument works simultaneously for a �= 0
and a = 0). The form of the coefficients determined below will be the staring point in the next
sections.

Proposition 3.9. Let Ai,j and Bi satisfy the conditions in Theorem 3.7(ii) and assume that Ai,j

vanishes on {x: xj = 0}. Then, the polynomial identities (2.12a) imply that

Ai,j = xj (axi + li,j ), (3.14)

Bi = bxi + si , (3.15)

or equivalently:

αi,j = −xj (axi + li,j ), (3.16)

βi = axi

d∑
k=1

xk +
d∑

k=1

li,kxk + bxi + si , (3.17)

γi = axi

d∑
k=1

xk + xi

d∑
k=1

lk,i , (3.18)

for some constants a, b, li,j and si .
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Proof. Equation (3.15) follows immediately from (3.3a). From Eqs. (3.3b), (3.3c) and the fact
that Ai,j vanishes on {x: xj = 0} we deduce that

Ai,j = xj (qi,j xi + li,j ), (3.19)

where qi,i = a and qi,j +qj,i = 2a. It remains to show that qi,j = a for all i �= j . From (2.4)–(2.6)
we see that

αi,j = −qi,j xixj + linear terms,

βi = xi

n∑
k=1

qi,kxk + linear terms,

γi = xi

n∑
k=1

qk,ixk + linear terms.

Comparing the coefficient of x3
i x3

j on both sides of (2.12a) we obtain

qi,j

(
q2
j,i + a2) = qj,i

(
q2
i,j + a2),

which combined with qi,j + qj,i = 2a gives qi,j = qj,i = a. �
In the rest of the paper, we will find the general solution of the compatibility conditions (2.12),

by equating the coefficients of the different powers of x, and we will determine the possible
sets V , weights W as well as explicit bases of orthogonal polynomials.

Notice that (3.4) implies that λk must be at most quadratic in k. Thus, we have essentially two
possible cases:

(i) λk is quadratic in k (i.e. a �= 0);
(ii) λk is linear in k (i.e. a = 0).

Since we can always divide the equation Du = λku by a nonzero constant, we can take a = −1
in (i) and similarly we can normalize so that b = −1 in (ii). These two cases are discussed in
Sections 5 and 6 respectively. In the next section we treat in details the case d = 1.

4. One-dimensional orthogonal polynomials

The one-dimensional case is the simplest case with no compatibility conditions. Our goal in
this section is to provide a detailed study in this simplest situation and to show how the procedure
works (i.e. how we determine the weight function W(x) and the set V ). The discrete orthogonal
polynomials of one variable will also serve as building blocks in the higher-dimensional cases.

Historically, orthogonal polynomials satisfying difference equations of one variable were
studied early in last century, we refer to [1,6] for references. It is well known that there are four
families of such orthogonal polynomials of one variable, namely, Hahn polynomials, Meixner
polynomials, Krawtchouk polynomials, and Charlier polynomials. However, to our great sur-
prise, another family of orthogonal polynomials of discrete variable shows up in our study.
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For simplicity of notation, we will drop all indices within this section, i.e. x = (x1) ∈ R,
E = E1, � = �1, etc. The operator D will be of the form

D = A(x)�∇ + B(x)� = β(x)E − (
β(x) + A(x)

)
I + A(x)E−1, (4.1)

where

A(x) = x(ax + l), B(x) = bx + s and β(x) = A(x) + B(x). (4.2)

As we explained at the end of the previous section, we have two possible cases:

(i) quadratic eigenvalue λk , we can fix a = −1;
(ii) linear eigenvalue λk , we can fix a = 0, b = −1.

4.1. Quadratic eigenvalue: a = −1

In order to make the formulas more symmetric, let us write A(x), β(x) and B(x) as

A(x) = −x(x + α3), (4.3a)

β(x) = −(x + α1 + 1)(x + α2 + 1), (4.3b)

B(x) = β(x) − A(x) = (α3 − α1 − α2 − 2)x − (1 + α1)(1 + α2), (4.3c)

i.e. we have replaced l = −α3, b = α3 − α1 − α2 − 2 and s = −(1 + α1)(1 + α2). Thus (2.9)
gives

W(x)

W(x − 1)
= β(x − 1)

A(x)
= (x + α1)(x + α2)

x(x + α3)
. (4.4)

There are essentially 2 possibilities, depending on if the numerator in (4.4) vanishes for some
positive integer x or not.

Hahn polynomials. Let (4.4) vanish for x = N + 1 but be positive for x � N . Then one of α1
and α2 must be equal to −N − 1, say α2 = −N − 1 and we can rewrite (4.4) as

W(x)

W(x − 1)
= (x + α1)(N + 1 − x)

x(β1 + 1 + N − x)
, (4.5)

where we denoted β1 = −α3 − N − 1. Thus, up to a constant factor, the weight becomes

W(x) =
(

α1 + x

x

)(
β1 + N − x

N − x

)
.

The corresponding orthogonal polynomials on V 1
N = {0,1, . . . ,N} are the Hahn polynomials

Qn(x;α1, β1,N) given by

Qn(x;α1, β1,N) = 3F2

(−n,n + α1 + β1 + 1,−x ;1

)
. (4.6)
α1 + 1,−N
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In order to have a positive weight at all x ∈ V 1
N the right-hand side of (4.5) must be positive for

x = 1,2, . . . ,N . Putting x = 1 and x = N we see that (α1 + 1)(β1 + N) > 0 and (α1 + N) ×
(β1 + 1) > 0. Starting with β1 > −1 or β1 < −1 shows that there are two solutions,

(i) α1 > −1, β1 > −1,
(ii) α1 < −N , β1 < −N .

Conversely, it is clear that if α1 and β1 satisfy (i) or (ii) the weight function W(x) will have a
constant sign on V 1

N . Hahn polynomials satisfy the following orthogonal relation

N∑
x=0

(α1 + 1)x(β1 + 1)N−x

x!(N − x)! Qn(x;α1, β1,N)Qm(x;α1, β1,N)

= (−1)nn!(β1 + 1)n(n + α1 + β1 + 1)N+1

N !(2n + α1 + β1 + 1)(−N)n(α1 + 1)n
δn,m. (4.7)

The difference operator D takes the form

D = x(β1 + N + 1 − x)�∇ + (
(α1 + 1)N − x(α1 + β1 + 2)

)
�. (4.8)

Hahn-type polynomials on N0. Assume now that the right-hand side of (4.4) does not vanish for
any x ∈ N. Then it must be positive for all x ∈ N. In order to have a positive function W(x) and
to have convergent series

∑
x∈N0

xnW(x) for some n ∈ N0, the parameter α3 must be positive
and α1, α2 must satisfy one of the following

(i) α1 and α2 are both positive, or there exists a negative integer κ such that α1, α2 ∈ (κ, κ + 1);
(ii) α2 = ᾱ1 ∈ C \ R.

For such α1, α2, α3 we can write the weight W(x) as

W(x) =
(
x+α1

x

)(
x+α2

x

)(
x+α3

x

) = (α1 + 1)x(α2 + 1)x

x!(α3 + 1)x
. (4.9)

The series
∑

x�0 xnW(x) converges absolutely for n < α3 − α1 − α2 − 1, i.e. the corresponding
polynomials will be orthogonal on N0 up to a given degree. It seems that these polynomials have
not appeared in the literature before. Therefore, we derive below their basic properties: explicit
formula in terms of hypergeometric functions, the three term recurrence formula, etc.

Proposition 4.1. The polynomials

Rn(x) = 3F2

(−n,n − α3 + α1 + α2 + 1,−x

α1 + 1, α2 + 1
;1

)
, (4.10)

satisfy

D
(
Rn(x)

) = n(α3 − α1 − α2 − 1 − n)Rn(x) (4.11)
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where

D = −x(x + α3)∇� + (
(α3 − α1 − α2 − 2)x − (1 + α1)(1 + α2)

)
�, (4.12)

and the orthogonal relation

∞∑
x=0

Rn(x)Rm(x)
(α1 + 1)x(α2 + 1)x

x! (α3 + 1)x
= 0,

for n �= m such that n + m < α3 − α1 − α2 − 1.

Proof. We look for a solution of (4.11) of the form

Rn(x) =
n∑

k=0

akmk(x), where mk(x) = (−x)k

k! . (4.13)

Notice that

�mk = −mk−1, x∇mk = kmk and xmk−1 = (k − 1)mk−1 − kmk. (4.14)

Using these formulas we can easily calculate D(Rn):

D
(
Rn(x)

) =
n∑

k=1

[
(x + α3)x∇(

akmk−1(x)
) − (

(α3 − α1 − α2 − 2)x

− (1 + α1)(1 + α2)
)
akmk−1(x)

]
=

n∑
k=1

[
(k − α3 + α1 + α2 + 1)x + α3(k − 1) + (1 + α1)(1 + α2)

]
akmk−1(x)

=
n∑

k=0

[
k(α3 − α1 − α2 − 1 − k)ak + (α1 + k + 1)(α2 + k + 1)ak+1

]
,

where in the last formula we assumed that an+1 = 0. Thus the difference equation (4.11) leads
to the recursive relation

ak+1 = − (n − k)(n + k − α3 + α1 + α2 + 1)

(α1 + k + 1)(α2 + k + 1)
ak,

whose solution with a0 = 1 is

ak = (−n)k(n − α3 + α1 + α2 + 1)k

(α1 + 1)k(α2 + 1)k
. (4.15)

This shows that the polynomials Rn(x) defined by (4.10) satisfy (4.11). The orthogonality fol-
lows from Remark 3.4. �

From the explicit formula we can derive other properties of these orthogonal polynomials.
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Proposition 4.2. The polynomials Rn satisfy the three-term relation

xRn(x) = anRn+1(x) − (an + cn)Rn(x) + cnRn−1(x), (4.16)

where the coefficients are given by

an = (n + α1 + 1)(n + α2 + 1)(n − α3 + α1 + α2 + 1)

(2n − α3 + α1 + α2 + 1)(2n − α3 + α1 + α2 + 2)
(4.17a)

and

cn = − n(n − α3 + α1)(n − α3 + α2)

(2n − α3 + α1 + α2)(2n − α3 + α1 + α2 + 1)
. (4.17b)

Proof. Using again (4.14) we see that

xRn =
n∑

k=1

k(ak − ak−1)mk(x) − (n + 1)anmn+1(x),

where ak are given by (4.15). It is now a simple matter to compare it with anRn+1(x) −
(an + cn)Rn(x) + cnRn−1(x) and verify that the coefficients of mk(x) agree for k = 0,1, . . . ,

n + 1. �
Proposition 4.3. The norm of the polynomial Rn can be computed from the formula

〈Rn,Rn〉 = n!
(α3 − α1 − α2 − 2n − 1)(1 + α1)n(1 + α2)n

× (α3 − α1 − α2 − n)(α3 + 1)

(α3 − α1 − n)(α3 − α2 − n)
. (4.18)

Proof. Using the three-term relation, a standard computation shows that

〈Rn,Rn〉 = cncn−1 · · · c1

an−1an−2 · · ·a0
〈R0,R0〉.

The quantity 〈R0,R0〉 = 〈1,1〉 is a 2F1 evaluated at 1, which can be computed in closed form
using Gauss’ formula

〈1,1〉 = (α3 + 1)(α3 − α1 − α2 − 1)

(α3 − α1)(α3 − α2)
.

The statement follows from the above relations, (4.17) and the formula

(x) = (−1)n(−x + 1)n(x − n). �
Remark 4.4. Notice that although 〈Rn,Rm〉 converges only for finitely many (n,m), for-
mula (4.10) defines polynomials for every n ∈ N0. The operator D given in (4.12) is admissible
according to Definition 3.3. Moreover, Eqs. (4.11) and (4.16) hold for every n ∈ N0. In particular,
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this implies that the polynomials Rn(x) provide a solution to the discrete–discrete version of the
bispectral problem discussed in [3].

4.2. Linear eigenvalue: a = 0 and b = −1

If a = 0 and b = −1, Eqs. (4.2) give A(x) = lx, B(x) = −x + s, and β(x) = A(x) + B(x) =
(l − 1)x + s. Thus

W(x)

W(x − 1)
= (l − 1)(x − 1) + s

lx
. (4.19)

We have now 2 possibilities: l = 1 or l �= 1.

Charlier polynomials. If l = 1, Eq. (4.19) essentially reduces to

W(x)

W(x − 1)
= s

x
,

i.e. s must be a positive number and (up to a constant factor) W(x) = sx/x!. The corresponding
polynomials are the Charlier polynomials

Cn(x; s) = 2F0

(−n,−x

− ;−1

s

)
orthogonal on N0. The difference operator takes the form

D = x�∇ + (s − x)� = sE − (x + s)I + xE−1. (4.20)

Assume now that l �= 1. Then, we can rewrite (4.19) as

W(x)

W(x − 1)
= c

x + d

x
, (4.21)

where we have put c = (l − 1)/ l �= 0 and d = (1 + s − l)/(l − 1).
We now have two possibilities depending on the sign of c.

Krawtchouk polynomials. If c < 0 then (4.21) can be rewritten as

W(x)

W(x − 1)
= (−c)

−d − x

x
, (4.22)

from which it follows that (−d) must be a positive integer (otherwise, W(x) will become negative
at some point). If we put d = −N − 1 and p = c/(c − 1) ∈ (0,1) we obtain the Krawtchouk
polynomials

Kn(x;p,N) = 2F1

(−n,−x

−N
; 1

p

)
orthogonal on V 1

N = {0,1, . . . ,N} with respect to the weight W(x) = px(1 − p)N−x
(
N
x

)
. The

difference operator takes the form

D = x(1 − p)�∇ + (Np − x)�. (4.23)
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Meixner polynomials. If c > 0 then W(1) > 0 implies that β := d + 1 > 0. In order to have
convergent series, we need c < 1. This leads to the Meixner polynomials

Mn(x;β, c) = 2F1

(−n,−x

β
;1 − 1

c

)
, (4.24)

depending on two parameters 0 < c < 1 and β > 0, orthogonal on N0 with respect to the weight
W(x) = cx(β)x/x!. The difference operator is

D = x

1 − c
�∇ +

(
−x − cβ

1 − c

)
�. (4.25)

The Meixner polynomials satisfy the orthogonal relation

∞∑
x=0

(β)x

x! cxMn(x,β, c)Mm(x,β, c) = c−nn!
(β)n(1 − c)β

δm,n. (4.26)

5. Multivariable case with quadratic eigenvalue: a = −1

We first solve the compatibility conditions (2.12) in arbitrary dimension d > 1, and then we
write explicitly all possible orthogonal polynomials with the corresponding weights. For a = −1
formulas (3.16)–(3.18) give:

αi,j = xj (xi − li,j ), (5.1a)

βi = −xi

d∑
k=1

xk +
d∑

k=1

li,kxk + bxi + si , (5.1b)

γi = xi

(
−

d∑
k=1

xk +
d∑

k=1

lk,i

)
. (5.1c)

The next proposition gives the general solution to the compatibility conditions (2.12).

Proposition 5.1. For a = −1 there are 2 solutions to the compatibility conditions.

Solution 1:

αi,j = xj (xi − li ), (5.2a)

βi = −(xi − li )

(
d∑

k=1

xk − b − r

)
, (5.2b)

γi = −xi

(
d∑

k=1

xk −
d∑

k=1

lk − r

)
, (5.2c)

where b, r , and {li}d are free parameters.
i=1
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Solution 2:

αi,j = xj (xi − li ), (5.3a)

βi = −(xi − li )

(
d∑

k=1

xk −
d∑

k=1

lk + 1 − ri

)
, (5.3b)

γi = −xi

(
d∑

k=1

xk −
d∑

k=1

lk − ri

)
, (5.3c)

where {li , ri}di=1 are free parameters and b = ∑d
k=1 lk − 1.

Proof. Let us take i �= j and let k �= i, j . Comparing the coefficients of x3
i xj xk and x3

i xj on both
sides of (2.12a) we get:

−(lj,k + lj,i + 2) = −2(lj,i + 1), (5.4)

and

(lj,i + 1)

(
d∑

k=1

lk,i

)
− (sj − 1 − b − lj,j ) + (1 + li,j )(1 + lj,i )

= −(lj,i + 1)

[
−

(
d∑

k=1

lk,j

)
− (b + li,i + 2)

]
. (5.5)

Equation (5.4) simply means that for i �= j , lj,i is independent of i, i.e. we can put lj := lj,i for
j �= i. Using this in (5.5) we obtain that

sj = lj (lj − lj,j − b). (5.6)

Our formulas simplify as follows

αi,j = xj (xi − li ), (5.7a)

βi = −xi

d∑
k=1

xk + li
∑
k �=i

xk + (li,i + b)xi − li (li,i + b − li )

= −(xi − li )

(
d∑

k=1

xk − li,i − b + li

)
, (5.7b)

γi = xi

(
−

d∑
xk +

∑
lk + li,i

)
. (5.7c)
k=1 k �=i
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With the above formulas it is very easy to solve completely (2.12a). Indeed, after canceling
the common factor xixj (xi − li − 1)(xj − lj − 1) Eq. (2.12a) gives

(li,i − li − lj,j + lj )

(
d∑

k=1

lk − b − 1

)
= 0. (5.8)

Let us denote ri = li,i − li . Then the first factor in the last formula is simply ri − rj .
From (5.8) it follows that we have 2 possibilities: ri = rj for all i �= j , i.e. r := ri is indepen-

dent of i, or b = ∑d
k=1 lk − 1. The first leads to Solution 1, and the second leads to Solution 2. It

is immediate to see that the functions defined by (5.2) or (5.3) satisfy (2.12b). �
Next, we want to determine the possible weights and orthogonal polynomials. It is easy to see

that there is no weight corresponding to Solution 2. Otherwise, from (5.3) and (2.9) we will have

W(x)

W(x − ei)
= xi − li − 1

xi

for i = 1,2, . . . , d. (5.9)

Then, for x = ei it follows that li < 0, i.e. we can put −li = ri > 0 and therefore, up to a constant
factor, W(x) is given by

W(x) =
d∏

i=1

(ri)xi

xi ! ,

but then even 〈1,1〉 will diverge.
Let us now concentrate on Solution 1, given by (5.2). Equations (5.2) and (2.9) give

W(x)

W(x − ei)
= xi − li − 1

xi

(
∑d

k=1 xk − b − r − 1)

(
∑d

k=1 xk − ∑d
k=1 lk − r)

, (5.10)

for i = 1,2, . . . , d . For a vector y ∈ R
k we will denote

|y| =
k∑

i=1

yi. (5.11)

If we put

σi = −(li + 1), (5.12)

and

σ = (σ1, σ2, . . . , σd) (5.13)

we can write (5.10) as

W(x) = xi + σi (|x| − b − r − 1)
. (5.14)
W(x − ei) xi (|x| + |σ | + d − r)
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We have several possible sub-cases, depending on whether the right-hand side in Eq. (5.14) can
vanish or not. We divide them first in two big subclasses:

• b + r /∈ N0;
• b + r ∈ N0.

5.1. Case 1: b + r /∈ N0

Then |x| − b − r − 1 does not vanish. We have two possibilities:

5.1.1. For some i ∈ {1,2, . . . , d}, (−σi) /∈ N. We show below that this implies that σj > −1
for all j ∈ {1,2, . . . , d}. Take j �= i, arbitrary k ∈ N and n ∈ N0. From (5.14) we see that

W(kei + nej )

W((k − 1)ei + nej )
= k + σi

k

k + n − b − r − 1

k + n + |σ | + d − r
> 0. (5.15)

The second ratio is positive for large n, and therefore k + σi > 0 for every k ∈ N, i.e. σi > −1.
Equation (5.15) for n = 0 implies that

k − b − r − 1

k + |σ | + d − r
> 0,

for every k ∈ N. But then for every j ∈ {1,2, . . . , d} we must have

W(ej )

W(0)
= 1 + σj

1

1 − b − r − 1

1 + |σ | + d − r
> 0,

showing that σj > −1.
Since σj > −1 for all j and b + r /∈ N0 we must have V = N

d
0 . Up to a constant, the weight

W(x) is given by

W(x) =
d∏

i=1

(σi + 1)xi

xi !
(−b − r)|x|

(|σ | + d − r + 1)|x|
.

Changing the parameters

γ = |σ | + d − r, β = −(b + r) − 1,

the weight takes the form

W(x) =
d∏

i=1

(σi + 1)xi

xi !
(β + 1)|x|
(γ + 1)|x|

,

and the free parameters are {σi}, β and γ . The difference operator becomes
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D = −
∑

1�i,j�d

xj

[
σi + 1 + xi + δi,j

(
γ − |σ | − d

)]
�i∇j

+
d∑

i=1

[
xi

(
γ − β − |σ | − d − 1

) − (1 + β)(1 + σi)
]
�i, (5.16)

and λn = n(−n + γ − β − |σ | − d).
For a vector y = (y1, y2, . . . , yd) ∈ R

d we will denote

yj = (yj , yj+1, . . . , yd) and Yj = (y1, y2, . . . , yj ), (5.17)

with the convention that yd+1 = 0 and Y0 = 0. Let us denote by Rn(x;α1, α2, α3) the orthogonal
polynomials given by (4.10).

Theorem 5.2. For ν ∈ N
d
0 , such that 2|ν| < γ − |σ | − β − d − 1, the polynomials

Rν(x;σ,β, γ ) =
d∏

j=1

(α2,j + 1)νj
Rνj

(xj ;σj ,α2,j , α3,j ),

where α2,j and α3,j are given by

α2,j = β + ∣∣νj+1
∣∣ + |Xj−1|,

α3,j = γ − ∣∣νj+1
∣∣ − ∣∣σ j+1

∣∣ − (d − j) + |Xj−1|

satisfy the difference equation

Dφν = λ|ν|φν

and the orthogonal relation

∑
x∈N

d
0

Rν(x;σ,β, γ )Rμ(x;σ,β, γ )

d∏
i=1

(σi + 1)xi

xi !
(β + 1)|x|
(γ + 1)|x|

= Aνδν,μ, (5.18)

where

Aν = (1 + β)|ν|(1 + γ )(γ − β − |σ | − 2|ν| − d)

(γ − |σ | − |ν| + 1 − d)(γ − β)

×
d∏

j=1

νj !(α3,j − α2,j − νj )νj
(α3,j−1 − α2,j−1 + 1)νj

(1 + σj )νj

. (5.19)

Proof. Notice that α3,j − α2,j is independent of x, and therefore from (4.10) one can immedi-
ately see that φν is indeed a polynomial of x of total degree |ν|. From Theorem 3.7 we know that
for every k ∈ N0, the equation Du = λku has rk = (

k+d−1
k

) = dim(Πd
k /Πd

k−1) linearly indepen-
dent solutions. Therefore, it is enough to prove that (5.18) holds.
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In (5.18) we will first sum with respect to xd , then with respect to xd−1, and so on. Writing

(β + 1)|x| =
(
β + 1 + |Xd−1|

)
xd

(β + 1)|Xd−1|

and extracting only the terms depending on xd we get the sum

Iνd ,μd
: =

∑
xd�0

Rνd
(xd)Rμd

(xd)
(σd + 1)xd

xd !
(β + 1 + |Xd−1|)xd

(γ + 1 + |Xd−1|)xd

=
∑
xd�0

Rνd
(xd)Rμd

(xd)
(σd + 1)xd

xd !
(α2,d + 1)xd

(α3,d + 1)xd

,

where Rm(xd) = Rm(xd;σd,α2,d , α3,d ). Using now (4.18) and the fact that α3,d − α2,d = γ − β

is independent of x, we see that

Iνd ,μd
= δνd ,μd

Bνd

(γ + |Xd−1| + 1)

(1 + β + |Xd−1|)νd
(γ − σd − νd + |Xd−1|) ,

where Bνd
is a constant (independent of x), whose value can be extracted from (4.18)

Bνd
= νd !(γ − β − σd − νd)

(1 + σd)νd
(γ − β − σd − 2νd − 1)(γ − β − νd)

.

Using the fact that

(x) = (x − n)n(x − n), (5.20)

we see that

Iνd ,μd
= δνd ,μd

Cνd

(γ + 1)|Xd−1|
(1 + β + |Xd−1|)νd

(γ − σd − νd)|Xd−1|
,

with Cνd
= Bνd

(γ + 1)/(γ − σd − νd). This shows, in particular, that

[(
β + 1 + |Xd−1|

)
νd

]2 (β + 1)|Xd−1|
(γ + 1)|Xd−1|

Iνd ,μd

= δνd ,μd
Cνd

(β + 1)νd

(β + 1 + νd)|Xd−1|
(γ − σd − νd)|Xd−1|

, (5.21)

where we have used the identity

(β + 1)|Xd−1|
(
β + 1 + |Xd−1|

)
νd

= (β + 1)|νd |(β + 1 + νd)|Xd−1|. (5.22)

Equation (5.21) shows that the remaining d − 1 fold sums of 〈Rν,Rμ〉 have exactly the same
structure as that of the original d fold sums with β and γ replaced by β +νd and γ −σd −νd −1,
respectively. In other words, it shows that we can use induction to complete the proof. For Aν we
obtain the following formula:
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Aν = (1 + β)|ν|(1 + γ )

(γ − |σ | − |ν| + 1 − d)

d∏
j=1

νj !
(1 + σj )νj

(γ − β − |σ j | − 2|νj | + j − d − 1)

×
d∏

j=1

(γ − β − |σ j | − 2|νj+1| − νj + j − d)

(γ − β − |σ j+1| − 2|νj+1| − νj + j − d)
. (5.23)

Using several times (5.20) one can rewrite the right-hand side as in (5.19). �
5.1.2. For every i ∈ {1,2, . . . , d} we have (−σi) = li +1 ∈ N, i.e. li ∈ N0. The corresponding

V is the parallelepiped

V d
l = {

x ∈ N
d
0 : xi � li

}
.

By (5.10) the weight function in this case is given by

W(x) =
d∏

i=1

(−li )xi

xi !
(β + 1)|x|

(−|l| − r + 1)|x|
, (5.24)

where we again set β = −(b + r)− 1. Putting x = ei and x = (l1, l2, . . . , ld) in (5.10) we get that

β + 1

|l| + r − 1
> 0 and

|l| + β

r
> 0.

From this we see that the parameters β and r must satisfy one of the following conditions:

(i) β > −1 and r > 0;
(ii) β < −|l| and r < −|l| + 1.

Recall that b+r /∈ N0, but everything will hold even if b+r = −β −1 ∈ N0 as long as β +|l| < 0
(i.e. if (ii) holds), because (β + 1)|x| will not vanish for x ∈ V d

l .
In the following we will use the notations yj and Yj defined in (5.17). For example, |Lj | =

l1 +· · ·+ lj . If ν, l ∈ N
d
0 , then ν � l means νi � li for 1 � i � d . Recall that the Hahn polynomials

are denoted by Qn(x;α1, β1,N).

Theorem 5.3. Let li ∈ N0, 1 � i � d . For ν ∈ N
d
0 , νi � li , the polynomials

φν(x;β, r, l) =
d∏

i=1

(α1,j + 1)νj
Qνj

(xj ;α1,j , α2,j , lj ), (5.25)

where α1,j and α2,j are given by

α1,j = β + ∣∣νj+1
∣∣ + |Xj−1| and α2,j = |Lj−1| − |Xj−1| +

∣∣νj+1
∣∣ + r − 1,

satisfy the difference equation

Dφν = λ|ν|φν
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and the orthogonal relation

∑
ν�l

φν(x;β, r, l)φμ(x;β, r, l)

d∏
i=1

(−li )xi

xi !
(β + 1)|x|

(−|l| − r + 1)|x|
= Bνδν,μ, (5.26)

where the normalization constant is given by

Bν = (−1)|ν|(1 + β)|ν|
(r + |ν|)|l|−|ν|

d∏
j=1

νj !(β + r + 2|νj+1| + νj + |Lj−1|)lj +1

(−lj )νj
(β + r + 2|νj | + |Lj−1|) . (5.27)

Proof. Since α1,j + α2,j is independent of x, it is easy to see from (4.6) that φν is indeed a
polynomial of x of total degree ν. We proceed as in the proof of Theorem 5.2. In (5.26) we will
first sum with respect to xd . Using the fact that(−|l| − r + 1

)
|x| =

(−|l| − r + 1 + |Xd−1|
)
xd

(−|l| − r + 1
)
|Xd−1|,

(β + 1)|x| = (β + 1)|Xd−1|
(
β + 1 + |Xd−1|

)
xd

,

we can split the weight function as a product

W(x) = (−ld )xd
(β + 1 + |Xd−1|)xd

xd !(−|l| − r + 1 + |Xd−1|)xd

W ′(Xd−1)

where

W ′(Xd−1) =
d−1∏
i=1

(−li )xi

xi !
(β + 1)|Xd−1|

(−|l| − r + 1)|Xd−1|
.

It is easy to verify that

(−ld )xd
(β + 1 + |Xd−1|)xd

xd !(−|l| − r + 1 + |Xd−1|)xd

= ld !
(α2,d + 1)ld

(
xd + α1,d

xd

)(
ld − xd + α2,d

ld − xd

)
.

Hence, using the fact that α1,d and α2,d are independent of xd , the sum over xd in (5.26) becomes

Iνd ,μd
:= ld !

(α2,d + 1)ld
(α1,d + 1)νd

(α1,d + 1)μd

×
ld∑

xd=0

Qνd
(xd)Qμd

(xd)

(
xd + α1,d

xd

)(
ld − xd + α2,d

ld − xd

)
,

where Qm(xd) = Qm(xd,α1,d , α2,d , ld). Using (4.7) and simplifying, we get

Iνd ,μd
= δνd ,μd

(−1)νd νd !(νd + β + |Ld−1| + r)ld+1

(−l ) (2ν + β + |L | + r)

(α2,d + 1)νd

(α + 1)
(α1,d + 1)νd

.

d νd d d−1 2,d ld
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In the above expression, the term (α1,d + 1)νd
contains variables x1, . . . , xd−1. Combining this

term with W ′(Xd−1) and using (5.22), we see that the weight function for x1, . . . , xd−1 becomes

Wd−1(Xd−1) = (β + 1)νd

d−1∏
i=1

(−li )xi

xi !
(β + 1 + νd)|Xd−1|
(−|l| − r + 1)|Xd−1|

(α2,d + 1)νd

(α2,d + 1)ld
.

By the definition of α2,d and expanding the Pochhammer symbols gives

(−|l| − r + 1
)
|Xd−1|

(α2,d + 1)ld

(α2,d + 1)νd

= (−1)ld−νd
(−|l| − r + 1

)(−|l| − r + 2
) · · · (−|Ld−1| − r − νd + |Xd−1|

)
= (−|Ld−1| − r + 1 − νd

)
|Xd−1|

(|Ld−1| + r + νd

)
ld−νd

.

Consequently, the weight function Wd−1 becomes

Wd−1(Xd−1) = (β + 1)νd

(|Ld−1| + r + νd)ld−νd

d−1∏
i=1

(−li )xi

xi !
(β + 1 + νd)|Xd−1|

(−|Ld−1| − r + 1 − νd)|Xd−1|
.

Apart from a constant multiple, the weight function Wd−1 has exactly the same structure of
W(x) with β replaced by β + νd , r replaced by r + νd , l replaced by Ld−1, respectively, and one
variable less. Hence, we can use induction to complete the proof. For Bν we obtain the following
formula

Bν = (−1)|ν|(1 + β)|ν|
d∏

j=1

νj !(β + r + 2|νj+1| + νj + |Lj−1|)lj +1

(−lj )νj
(β + r + 2|νj | + |Lj−1|)(|Lj−1| + r + |νj |)lj −νj

,

which combined with

d∏
j=1

(|Lj−1| + r + ∣∣νj
∣∣)

lj −νj
= (

r + |ν|)|l|−|ν|,

gives (5.27). �
5.2. Case 2: b + r = N ∈ N0

Again we have two possibilities:

5.2.1. For every i ∈ {1,2, . . . , d}, li + 1 /∈ {1,2, . . . ,N}. In this case the numerator in (5.14)
is zero when |x| = N + 1 and we have V = V d

N . The corresponding orthogonal polynomials are
the Hahn polynomials studied in [4]. Setting σi = −li − 1 for 1 � i � d , σ = (σ1, . . . , σd+1),

r = N + |σ | + d + 1 and b = −(|σ | + d + 1
)
, (5.28)
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Eq. (5.14) gives

W(x)

W(x − ei)
= xi + σi

xi

N + 1 − |x|
N + 1 + σd+1 − |x| .

The above ratio must be positive for all x ∈ V d
N . In particular, for x = ei and x = Nei we see that

σi + 1

N + σd+1
> 0 and

σi + N

1 + σd+1
> 0 for i = 1,2, . . . , d.

From this it follows easily that the parameters {σi}d+1
i=1 satisfy one of the following conditions:

(i) σi > −1 for i = 1,2, . . . , d + 1;
(ii) σi < −N for i = 1,2, . . . , d + 1.

The weight function takes the form

W(x) =
d∏

i=1

(
xi + σi

xi

)(
N − |x| + σd+1

N − |x|
)

(5.29)

with {σi} as free parameters. If σi > −1 for i = 1,2, . . . , d + 1 or if σi < −N for i = 1,2, . . . ,

d + 1 but N is even then W(x) > 0 on V d
N . If σi < −N for i = 1,2, . . . , d + 1 and if N is odd

then W(x) < 0 on V d
N , so one needs to change the sign in formula (5.29), in order to get a positive

function.
The difference operator takes the form

D =
d∑

i=1

xi

(
N − xi + |σ | − σi + d

)
�i∇i −

∑
1�i �=j�d

xj (xi + σi + 1)�i∇j

+
d∑

i=1

[
(N − xi)(σi + 1) − xi

(|σ | − σi + d
)]

�i

and the eigenvalues are λn = −n(n + |σ | + d).

Theorem 5.4. For ν ∈ N
d
0 and |ν| � N , the polynomials

Qν(x;σ,N) = (−1)|ν|

(−N)|ν|

d∏
j=1

(σj + 1)νj

(aj + 1)νj

(−N + |Xj−1| +
∣∣νj+1

∣∣)
νj

× Qνj

(
xj ;σj , aj ,N − |Xj−1| −

∣∣νj+1
∣∣), (5.30)

where aj = |σ j+1| + 2|νj+1| + d − j , satisfy the difference equation

DQν = λ|ν|Qν
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and the orthogonal relation

∑
|x|�N

Qν(x;σ,N)Qμ(x;σ,N)

d∏
i=1

(
xi + σi

xi

)(
N − |x| + σd+1

N − |x|
)

= Aνδν,μ, (5.31)

where Aν is given by

Aν = (−1)|ν|(|σ | + d + 2|ν| + 1)N−|ν|
(−N)|ν| N !

d∏
j=1

(σj + aj + νj + 1)νj
(σj + 1)νj

νj !
(aj + 1)νj

. (5.32)

These formulas are essentially contained in [4]. They can be deduced from (4.7) as in the
proof of Theorem 5.2. Explicit biorthogonal (not mutually orthogonal) Hahn polynomials were
also found in [8].

5.2.2. There is a nonempty set S ⊂ {1,2, . . . , d} and li + 1 ∈ {1,2, . . . ,N} for i ∈ S. In this
case the set V is

V d
N,S = V d

N ∩ {x: xi � li for i ∈ S}. (5.33)

If S = {1,2, . . . , d} we can also assume that l1 + · · · + ld > N , otherwise it becomes the paral-
lelepiped case discussed Theorem 5.3.

The weight W(x) is again given by (5.29), but V d
N is replaced by V d

N,S . The corresponding

polynomials are the same as in Theorem 5.4, with the restriction ν ∈ V d
N,S .

Theorem 5.5. For ν ∈ V d
N,S the polynomials Qν(x;σ,N) defined by (5.30) satisfy the difference

equation

DQν = λ|ν|Qν

and the orthogonal relation

∑
x∈V

Qν(x;σ,N)Qμ(x;σ,N)

d∏
i=1

(
xi + σi

xi

)(
N − |x| + σd+1

N − |x|
)

= Aνδν,μ,

where Aν is given by (5.32).

Remark 5.6. Notice that (5.25) in the parallelepiped case V d
l gives a polynomial of total de-

gree |ν|. We can use the generators Gd
l in Example 3.1 to write the same polynomial using only

the monomials xμ with μ ∈ V d
l . Similarly, in the case of Theorem 5.5 we can use the generators

{(−xi)li+1: i ∈ S} to express Qν in terms of the monomials xμ with μ ∈ V d
N,S .

Remark 5.7. In Theorems 5.3–5.5 we have rk = |Λk(V )| < dim(Πd
k /Πd

k−1) for some k’s and
therefore the equation Du(x) = λu(x) will hold a priori only if we consider u(x) as an element
of R[V ]. However, one can show that the corresponding polynomials can be obtained as a limit
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from the polynomials in Theorem 5.2. This fact can be used to show that the equation Du(x) =
λu(x) actually holds in the space R[x1, x2, . . . , xd ].
5.3. Summary

If a = −1 we have essentially one difference equation with coefficients given in (5.2). By
specifying the free parameters, however, we end up with four different types of solutions given
in Theorems 5.2–5.5, respectively.

As an example, let us consider the case d = 2. The weight functions and the corresponding
sets on which they live are listed below:

(i) W(x) = (σ1 + 1)x1(σ2 + 1)x2

x1!x2!
(β + 1)|x|

(−|σ | − d − r + 1)|x|
, V = N

2
0;

(ii) W(x) = (−l1)x1(−l2)x2

x1!x2!
(β + 1)|x|
(−l − r)|x|

, V = V 2
l ;

(iii) W(x) = (σ1 + 1)x1(σ2 + 1)x2

x1!x2!
(σ3 + 1)N−|x|

(N − |x|)! , V = V 2
N ;

(iv) W(x) = (−l1)x1

x1!
(−l2)x2

x2!
(σ3 + 1)N−|x|

(N − |x|)! , V = V 2
N,S, where S = {1,2};

(v) W(x) = (−l1)x1

x1!
(σ2 + 1)x2

x2!
(σ3 + 1)N−|x|

(N − |x|)! , V = V 2
N,S, where S = {1}.

In the last case, one can also exchange x1 and x2 to get another case. It should be mentioned that
Eq. (5.2) was considered in [12], but only the case (iii) was identified there.

6. Multivariable case with linear eigenvalue: a = 0 and b = −1

When a = 0 and b = −1, Eqs. (3.15)–(3.18) become

αi,j = −li,j xj for i �= j, (6.1a)

Bi = −xi + si , (6.1b)

βi =
∑
k �=i

li,kxk + (li,i − 1)xi + si , (6.1c)

γi = xi

d∑
k=1

lk,i . (6.1d)

First, notice that we cannot have γi = 0. Indeed, if we assume that γi = 0 then in order to have
a self-adjoint operator we need βi = 0, which implies that li,k = 0 for k �= i. But then αi,k = 0 for
k �= i and therefore αk,i = 0 for k �= i, which simply means that the operator D is independent of
xi and E±1

i . Thus we have an operator acting in a (d − 1)-dimensional space, trivially extended,
by adding xi as explained in Remark 3.6.

Below we assume that γi �= 0 for all i. Notice that γi depends only on xi , so in (2.12b) we can
cancel γiγj and we get

βi(x − ei)βj (x − ei − ej ) = βj (x − ej )βi(x − ei − ej ). (6.2)
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But βi(x − ei) = βi(x) + 1 − li,i and βi(x − ei − ej ) = βi(x) + 1 − li,i − li,j and plugging these
in (6.2) we get

lj,i
(
βi(x) + 1 − li,i

) = li,j
(
βj (x) + 1 − lj,j

)
, (6.3)

for i �= j . Comparing the coefficients of xk in the last formula we see that

lj,i li,k = li,j lj,k for k �= i, j, (6.4)

lj,i li,j = li,j (lj,j − 1). (6.5)

These two equations have essentially two different types of solutions, which we discuss in two
subsections.

6.1. Case 1: li,j �= 0 for all 1 � i �= j � d

Proposition 6.1. Assume that li,j �= 0 for all 1 � i �= j � d . Then the most general solution of
the compatibility conditions (2.12) is given by

αi,j = −lixj for i �= j, (6.6a)

Bi = −xi + lis, (6.6b)

βi = li

(
d∑

k=1

xk + s

)
, (6.6c)

γi = xi

(
d∑

k=1

lk + 1

)
, (6.6d)

where s and {li}di=1 are free parameters.

Proof. From Eq. (6.5) it follows that lj,i = lj,j −1. Denote lj := lj,j −1. Then we have lj,i = lj
for all i �= j . Using now (6.3) we see that lj si = lisj . Thus si = lis, which leads to formulas (6.6).

Conversely, it is straightforward to see that if we define αi,j , βi and γi as in (6.6a), (6.6c)
and (6.6d), then the compatibility conditions in Corollary 2.3 are satisfied, i.e. the above formulas
give the most general solution in the case li,j �= 0. �

Below we determine the weight functions and the corresponding orthogonal polynomials. For
every i we have

W(x)

W(x − ei)
= li

|l| + 1

|x| + s − 1

xi

and therefore

W(ei)

W(0)
= lis

|l| + 1
> 0,

which shows that li must have the same signs. There are two possible cases.
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6.1.1. li = −pi < 0 for all i. In this case,

W(x)

W(x − ei)
= pi

1 − |p|
1 − s − |x|

xi

.

If the denominator does not vanish, then for |x| large the second ratio will be negative and
therefore we must have 1 − |p| < 0, i.e. |p| > 1. But then if we denote ci = pi/(|p| − 1) we will
have |c| > 1 and up to a constant factor the weight is W(x) = (s)|x|

∏d
i=1 c

xi

i /xi !, which leads to
divergent series.

Hence the only possibility here is (−s) = N ∈ N0. This forces |p| < 1 and V = V d
N . The

difference operator is then

D =
∑

1�i,j�d

(δi,j − pi)xj�i∇j +
d∑

i=1

(piN − xi)�i, (6.7)

and the eigenvalues are λn = −n. The orthogonal polynomials are the Krawtchouk polynomials
on V d

N . Recall that Krawtchouk polynomial in one variable is denoted by Kn(x;p,N).

Theorem 6.2. Let 0 < pi < 1, 1 � i � d , and |p| < 1. For ν ∈ N
d
0 , |ν| � N , the polynomials

Kν(x;p,N) = (−1)|ν|

(−N)|ν|

d∏
j=1

p
νj

j

(1 − p1 − · · · − pj )
νj

(−N + |Xj−1| +
∣∣νj+1

∣∣)
νj

× Kνj

(
xj ; pj

1 − p1 − · · · − pj−1
,N − |Xj−1| −

∣∣νj+1
∣∣) (6.8)

satisfy the difference equation

Dψν = λ|ν|ψν

and the orthogonal relation

∑
|x|�N

Kν(x;p,N)Kμ(x;p,N)

d+1∏
i=1

p
xi

i

xi !

= (−1)|ν|

(−N)|ν|N !
d∏

j=1

νj !pνj

j

(1 − p1 − · · · − pj )
νj −νj+1

δν,μ, (6.9)

where xd+1 = N − |x|, pd+1 = 1 − |p| and νd+1 = 0.

In fact, these orthogonal polynomials can be considered as a limit of the Hahn polynomi-
als (5.30) (see [9,10]). Indeed, using the well known relation

lim Qn

(
x;pt, (1 − p)t,N

) = Kn(x;p,N)

t→∞
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in one variable, it is not hard to see that

lim
t→∞Qν

(
x;p1t, . . . , pd t, (1 − p1 − · · · − pd)t,N

) = Kν(x;p,N).

The orthogonality of Kν(x;p,N) follows from (5.31) under the limit. We refer the reader to [5]
for other properties and applications of Krawtchouk polynomials.

6.1.2. li > 0 for all i. In this case s > 0. Denote ci = li/(1 + |l|). Then ci < 1 and |c| < 1,
the weight function is

W(x) = (s)|x|
x! cx = (s)|x|

d∏
i=1

c
xi

i

xi !

and V = N
d
0 . The difference operator takes the form

D =
∑

1�i,j�d

(
δi,j + ci

1 − |c|
)

xj�i∇j +
d∑

i=1

(
−xi + ci

1 − |c| s
)

�i. (6.10)

The orthogonal polynomials are the Meixner polynomials on N
d
0 but they are different from

product Meixner polynomials. Recall that Meixner polynomial in one variable is denoted by
Mn(x;β, c). We write |Cj | = cj + cj+1 + · · · + cd and define Cd+1 = 0.

Theorem 6.3. Let 0 < ci < 1, 1 � i � d , and |c| < 1. For ν ∈ N
d
0 , the polynomials

Mν(x; s, c) =
d∏

j=1

(δj )νj
Mνj

(
xj ; δj ,

cj

1 − |Cj+1|
)

(6.11)

where δj = s + |νj+1| + |Xj−1|, satisfy the difference equation

Dψν = λ|ν|ψν

and the orthogonal relation

∑
x∈N

d
0

Mν(x; s, c)Mμ(x; s, c)(s)|x|
d∏

i=1

c
xi

i

xi ! = (s)|ν|
(1 − |c|)s

d∏
j=1

νj !
(

cj

1 − |Cj+1|
)−νj

δν,μ. (6.12)

Proof. These relations can be derived inductively using the orthogonality (4.26) of the Meixner
polynomials of one variable. It is clear from (4.24) that Mν defined by (6.11) are indeed polyno-
mials of x. We can write the weight function as a product

W(x) = c
xd

d (s + |Xd−1|)xd
W ′(Xd−1)
xd !
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where

W ′(Xd−1) = (s)|Xd−1|
d−1∏
i=1

c
xi

i

xi ! .

Using (4.26) the sum over xd in (6.12) becomes

Iνd ,μd
= (

s + |Xd−1|
)
νd

(
s + |Xd−1|

)
μd

∞∑
xd=0

Mνd
(xd)Mμd

(xd)
c
xd

d (s + |Xd−1|)xd

xd !

= δνd ,μd

c
−νd

d νd !
(1 − cd)s

(s + |Xd−1|)νd

(1 − cd)|Xd−1| ,

where Mm(xd) = Mm(xd, s + |Xd−1|, cd).
Combining this with W ′ we obtain the new weight function

Wd−1(Xd−1) = c
−νd

d νd !(s)νd

(1 − cd)s
(s + νd)|Xd−1|

d−1∏
i=1

1

xi !
(

ci

1 − cd

)xi

.

Apart from a constant multiple, the weight function Wd−1 has exactly the same structure of
W(x) with s replaced by s +νd , and ci replaced by ci/(1− cd) for i = 1,2, . . . , d −1. The proof
now follows by induction. The constant 〈Mν,Mν〉 is given by

d∏
j=1

(
cj

1−|Cj+1| )
−νj νj !(s + |νj+1|)νj

(1 − cj

1−|Cj+1| )
s

,

which leads to (6.12). �
Remark 6.4. It is well known that the Meixner polynomials are the limit of the Hahn polynomi-
als,

lim
N→∞Qn

(
x;b − 1,N

1 − c

c
,N

)
= Mn(x;b, c).

There is an analogous relation between the Meixner polynomials (6.11) of several variables and
the orthogonal polynomials on the parallelepiped in (5.25), at least when parameters c have
rational values. Indeed, let φν(x;β, r, l) denote the polynomials defined in (5.25), which are
orthogonal with respect to the weight function in (5.24). In these polynomials we set β = s − 1
and

|Lj−1| + r =
(

1 − |Cj |
cj

)
lj , 1 � j � d.

Using induction, it is easy to see that lj /cj = lj−1/cj−1, which then implies that

lj = (|l| + r
)
cj , or lj = cj

r, 1 � j � d.

1 − |c|
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If cj are rational numbers, we can choose r = (1 − |c|)N , N ∈ N0, for certain N , so that lj are
integers. Upon taking r → ∞, which shows lj → ∞, it follows from (4.26) that

lim
l→∞φν(x; s − 1, r, l) = Mν(x; s, c). (6.13)

6.2. Case 2: li,j = 0 for some 1 � i �= j � d

Recall that αi,j = 0 for i �= j if and only if αj,i = 0. This essentially means that li,j and lj,i
are simultaneously zero or nonzero for i �= j .

Lemma 6.5. If j �= k and lj,k = 0 then for every i �= j, k we have li,j = lj,i = 0 or li,k = lk,i = 0.

Proof. Follows immediately from (6.4). �
Theorem 6.6. Assume that li,j = 0 for some 1 � i �= j � d . Define I = {i} ∪ {m: lm,i �= 0} and
J = {1,2, . . . , d} \ I ⊃ {j}. Then D = DI + DJ , where DI is an admissible operator in the
variables {xm: m ∈ I } and DJ is an admissible operator in {xk: k ∈ J }.

Proof. First we show that for m ∈ I and k ∈ J we have lm,k = lk,m = 0. Indeed if m = i, then
lk,i = 0 by the definition of J . If m �= i then lm,i �= 0, but lk,i = 0. The previous lemma shows
that lk,m = lm,k = 0.

Thus if m ∈ I and k ∈ J we see at once that:

• αm,k = αk,m = 0;
• βm contains only the variables from I ;
• βk contains only the variables from J .

The decomposition of D follows immediately from the above observations. �
Remark 6.7. Theorem 6.6 says that if li,j = 0 for some i �= j , then the operator D splits as a
sum of 2 operators of independent variables. Conversely let DI be an admissible operator in the
variables x′ = {xm: m ∈ I } and DJ be an admissible operator in x′′ = {xk: k ∈ J } with I ∩J = ∅
and I ∪ J = {1,2, . . . , d}. Let us denote by pI

μ(x′) and pJ
ν (x′′) the polynomials satisfying

DI

(
pI

μ

) = −|μ|pI
μ and DJ

(
pJ

ν

) = −|ν|pJ
ν .

Then if put D = DI + DJ and pμ,ν(x) = pI
μ(x′)pJ

ν (x′′), where x = (x′, x′′) ∈ R
d , we have

Dpμ,ν(x) = −(|μ| + |ν|)pμ,ν(x).

Thus, in this case, the eigenfunctions of the difference operator are product of orthogonal
polynomials of fewer variables, which satisfy difference equations of lower dimension with linear
eigenvalues. For d = 1 these are the polynomials of Charlier, Krawtchouk and Meixner given in
Section 4.2. In higher dimensions, there are also the Krawtchouk polynomials of several variables
given in Theorem 6.2 and the Meixner polynomials of several variables given in Theorem 6.3.

Clearly there are many product polynomials of this type and the number increases drastically
as the dimension grows. As an example, we list all cases for d = 3 below. To list the different
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types we use the abbreviation of C, K, M for Charlier, Meixner, and Krawtchouk polynomial
of one variable, respectively, and use K2 and M2 to denote the Krawtchouk polynomials of two
variables on V 2

N and Meixner polynomials of two variables on N
2
0. A product polynomial is

denoted by its components. As an example, CCM stands for a product of the type Charlier–
Charlier–Meixner.

Example 6.8 (d = 3). There are sixteen product types, which we list according to their domains
of orthogonality:

(1) N
3
0: CCC, MMM, CCM, CMM, CM2, MM2.

(2) N
2
0 × V 1

N : CCK, MMK, CMK, KM2.
(3) N0 × V 1

N1
× V 1

N2
: CKK, MKK.

(4) V 1
N1

× V 1
N2

× V 1
N3

: KKK.

(5) V 2
N × N0: K2C, K2M.

(6) V 2
N1

× V 1
N2

: K2K.
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