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Abstract While genomic sequencing routinely identifies oncogenic alterations for the majority of

cancers, many tumors harbor no discernable driver lesion. Here, we describe the exceptional

molecular phenotype of a genomically quiet kidney tumor, clear cell papillary renal cell carcinoma

(CCPAP). In spite of a largely wild-type nuclear genome, CCPAP tumors exhibit severe depletion of

mitochondrial DNA (mtDNA) and RNA and high levels of oxidative stress, reflecting a shift away

from respiratory metabolism. Moreover, CCPAP tumors exhibit a distinct metabolic phenotype

uniquely characterized by accumulation of the sugar alcohol sorbitol. Immunohistochemical staining

of primary CCPAP tumor specimens recapitulates both the depletion of mtDNA-encoded proteins
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and a lipid-depleted metabolic phenotype, suggesting that the cytoplasmic clarity in CCPAP is

primarily related to the presence of glycogen. These results argue for non-genetic profiling as a

tool for the study of cancers of unknown driver.

DOI: https://doi.org/10.7554/eLife.38986.001

Introduction
Cancer cells co-opt normal cellular functions to support malignant proliferation, and in turn offer a

glimpse onto the limits of atypical, distorted metabolism. For example, loss of fumarate hydratase

(FH), succinate dehydrogenase (SDH), or isocitrate dehydrogenase (IDH) induces pathological accu-

mulation of metabolites which potently inhibit alpha-ketoglutarate-dependent enzymes, inducing

hypermethylation of the genome and a fundamental reprogramming of cellular identity (Wal-

lace, 2012). Similarly, Otto Warburg observed that tumors take up and ferment large quantities of

glucose to lactate in normoxia (i.e. aerobic glycolysis), leading him to propose that mitochondrial

respiration defects are the underlying basis for cancer (Warburg, 1956a; Warburg, 1956b). Data

from tumor genomics, imaging and metabolomics have now demonstrated that not all tumors

exhibit signatures of aerobic glycolysis, and that alterations both intrinsic to mitochondria (e.g. mito-

chondrial DNA (mtDNA) depletion) and extrinsic to mitochondria (e.g. increased glucose uptake)

can induce aerobic glycolysis (Vyas et al., 2016; Zong et al., 2016).

While disruption of mitochondrial respiration is generally not viewed as a driver of oncogenesis, a

handful of individual cancer types are peculiarly enriched for mitochondrial dysfunction. A recent

study described signals of positive selection for loss-of-function somatic mutations in mtDNA in thy-

roid cancers and chromophobe renal cell carcinomas (chRCC) (Grandhi et al., 2017). In parallel,

genomic studies have established that many histologies of renal cell carcinoma (RCC) are associated

with disruption of mitochondrial respiration and metabolism. For example, the most common RCC

histology, clear cell renal cell carcinoma (ccRCC), is characterized by biallelic loss of the von Hippel-

Lindau (VHL) tumor suppressor and subsequent activation of hypoxia inducible factor (HIF), sup-

pressing mitochondrial respiration in favor of glycolytic metabolism. Similarly, chRCCs and renal

oncocytomas are characterized by loss-of-function mutations in the mitochondrial genome resulting

in accumulation of respiration-defective mitochondria (Joshi et al., 2015). Rare subtypes of RCC,

such as those driven by biallelic loss of the mitochondrial enzymes FH or SDH, also potently disrupt

normal respiratory function, lending further evidence to the recurrent pattern of mitochondrial dys-

function across RCC histologies.

While a variety of RCC histologies (including clear cell, hereditary leiomyomatosis, and TCEB1-

mutated subtypes) are characterized by activation of HIF, a substantial proportion of HIF-activated

RCCs harbor no clear genetic cause for HIF upregulation. In particular, we and others have described

a HIF-activated subtype of RCC characterized by cells with clear cytoplasm arranged in a papillary

architecture, known as clear cell papillary renal cell carcinoma (CCPAP) (Rohan et al., 2011). CCPAP

was initially described in kidneys with end stage renal disease (ESRD) (Tickoo et al., 2006), but was

subsequently also described in patients with normal renal function (Rohan et al., 2011;

Gobbo et al., 2008; Williamson et al., 2013). Clinically, CCPAP tumors are of low grade and stage,

and are thought to be generally more indolent in nature (Gobbo et al., 2008; Ross et al., 2012).

Morphologically, CCPAP tumor cells are unique in that their nuclei are oriented away from the base-

ment membrane in a linear fashion, and they lack high-grade features including prominent nucleoli,

mitotic figures, necrosis and sarcomatoid differentiation (Gobbo et al., 2008; Williamson et al.,

2013). A handful of molecular studies have reported that cytogenetically, CCPAP tumors show nei-

ther deletion of chromosome 3p nor mutation of VHL, the characteristic molecular features of

ccRCC. They also do not exhibit gains of chromosomes 7 and 17, or loss of chromosome Y, as com-

monly described in papillary renal cell carcinoma (pRCC) (Rohan et al., 2011; Gobbo et al., 2008;

Williamson et al., 2013). While several studies have now molecularly profiled CCPAP tumors, no

genetic drivers of the disease have been reported (Rohan et al., 2011; Ross et al., 2012;

Adam et al., 2011; Lawrie et al., 2014).

The unknown genetic basis of CCPAP tumors is a typical example of the large class of molecularly

profiled tumors for which no clear driver alteration has been identified. Indeed, a number of studies

now describe efforts to characterize the ‘long tail’ of potential genetic drivers (Chang et al., 2016).
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Within our own institution’s prospective sequencing cohort (Zehir et al., 2017), nearly 8% of tumors

show no alterations in the 341 cancer-associated genes assayed by the clinical sequencing panel.

Here, we report that the outstanding molecular phenotype distinguishing CCPAP tumors from nor-

mal tissue (and from other kidney cancers) is predominantly metabolic. Through comprehensive

molecular analysis, we find that while CCPAP tumors appear to harbor no recurrent somatic altera-

tions in nuclear DNA, they are broadly characterized by depletion of mtDNA, a drop in mitochon-

drial RNA expression, and excess levels of sorbitol, glutathione, and NADH. These findings are

recapitulated by immunohistochemical staining of primary CCPAP and ccRCC specimens, indicating

that in spite of a paucity of evident genetic drivers, CCPAP tumors harbor a distinct metabolic phe-

notype. This study offers a glimpse onto the pathological consequences of extreme mitochondrial

respiratory dysfunction, and may serve as an archetype for understanding tumors with few or no

discernable driver alterations.

Results

CCPAP is identified as metabolic outlier compared to ccRCC
In our recent metabolomic analysis of ccRCC tumors (herein referred to as dataset RC12)

(Hakimi et al., 2016), two tumors were identified as metabolic outliers. Specifically, multidimen-

sional similarity analysis using t-distributed stochastic neighbor embedding (t-SNE) indicated that

tumors 284 and 159 clustered separately from the 138 other tumors in the RC12 dataset

(Figure 1A). Pathologic re-review of these metabolic outliers identified them as bearing morphology

and immunohistochemical profile characteristic of CCPAP tumors. Interestingly, the primary meta-

bolic feature which distinguished these tumors from the ccRCC samples was the approximately

thirty-fold accumulation (relative to levels in adjacent normal kidney) of the sugar alcohol sorbitol.

To confirm if the distinct metabolic features of these outliers could be replicated, we performed

metabolomic profiling on an additional cohort of 9 pathologically confirmed CCPAP tumors, eight

ccRCC tumors, and 10 normal kidney tissues adjacent to ccRCC tumors. As shown in Figure 1B,

using t-SNE analysis, CCPAP samples again formed a distinct cluster from conventional ccRCC

tumors and from adjacent-normal tissue. Importantly, to evaluate the possibility that sorbitol levels

were excessively contributing to the t-SNE analysis, we also included two ccRCC samples from RC12

with aberrantly high sorbitol levels comparable to those from the other RC12 CCPAP samples. We

observed that high-sorbitol ccRCC tumors clustered with other ccRCC tumors and not with CCPAP

samples. These results were recapitulated using principal components analysis (Figure 1—figure

supplement 1).

CCPAP is metabolically characterized by alterations to sorbitol
metabolism and oxidative stress pathways
We used the RC13 metabolomic data to interrogate in detail the metabolic changes distinguishing

CCPAP from ccRCC. To do so, we calculated the change in metabolite abundance (which we call dif-

ferential abundance) in CCPAP samples compared to ccRCC samples. After adjusting for multiple-

hypothesis testing, we identified 200 differentially abundant metabolites with q value < 0.1 and a

greater than 2-fold change relative to ccRCC (non-parametric Mann-Whitney test, Figure 2A). Of

these, 152 were differentially abundant compared to adjacent normal kidney tissue, confirming the

CCPAP-specific nature of these metabolic changes (at least 2-fold change and q < 0.1, Mann-Whit-

ney test). Among these, sorbitol was among the metabolites with the largest change in abundance,

exhibiting an approximately 8.5-fold increase in CCPAP samples compared to ccRCC samples (64-

fold when excluding the atypical, high-sorbitol ccRCC samples) and a 36-fold elevation compared to

normal tissue (Figure 2A and C). To confirm the elevation of sorbitol, we independently quantified

absolute sorbitol abundance (Figure 2—figure supplement 1B) in six tumor samples profiled in

RC13 and 3 additional CCPAP tumors not profiled in RC13 (which we referred to as dataset RC15).

We observed good agreement between the two quantifications of sorbitol (Figure 2—figure sup-

plement 1C. Despite only having six overlapping samples measured in RC13 and RC15, similarly

good agreement was observed for the majority of the other commonly measured metabolites (12/27

with Pearson correlation p<0.1, 16/27 with Pearson correlation p<0.2, Figure 2—figure supplement

1C). Three other sugar alcohols (palatinitol, erythritol, and ribitol) were also elevated approximately
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CCPAP CCRCC

ccRCC normal CCRCC tumor, 

A

B

Figure 1. CCPAP is a metabolic outlier compared to conventional ccRCC. (A) t-distributed stochastic neighbor embedding (t-SNE) metabolomic data

from 140 nominal ccRCC identified two outlier tumors (dataset RC12). Pathological review confirmed that these tumors were clear cell papillary renal

cell carcinoma (CCPAP). (B) t-SNE of metabolomic data of a validation cohort (RC13) of 9 CCPAP and 10 ccRCC tumors confirmed that CCPAP tumors

cluster distinctly from ccRCC tumors.

Figure 1 continued on next page
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4-fold or greater in CCPAP compared to ccRCC (>5 fold when excluding atypical, high-sorbitol

ccRCC samples, Figure 2—source data 1), suggesting that a metabolic pathway associated with

production or degradation of polyols is differentially active in CCPAP tumors. Importantly, sorbitol

could be positively disambiguated from other sugar alcohols of the same mass by virtue of its dis-

tinct retention index (Figure 2—source data 2). Results of the differential abundance analysis were

highly similar when restricting to low stage ccRCC samples in RC13 (Figure 2—figure supplement

1A). Under physiological conditions, sorbitol can be produced in response to high levels of osmotic

stress. However, other metabolic markers of osmotic stress such as betaine, glycerophosphorylcho-

line, and myo-inositol, were not increased in CCPAP tumors.

Several other key groups of metabolites were at distinctly higher/lower abundance in CCPAP rel-

ative to ccRCC. Notably, CCPAP tumors had significantly elevated levels (>12 fold) of both reduced

and oxidized glutathione (GSH and GSSG), the cell’s primary anti-oxidants. Increases in abundance

of other metabolites involved in the response to oxidative stress were also evident, for example a 4-

fold increase in ophthalmate relative to ccRCC (with even greater elevation relative to normal tissue)

(Figure 2A and D, Figure 2—source data 1) (Soga et al., 2006). In contrast, a variety of lipids,

especially in the class of glycerophosphoethanolamines, were broadly downregulated in CCPAP rela-

tive to both ccRCC and normal tissue (Figure 2A, Figure 2—source data 1).

To further understand the metabolic reprogramming underlying CCPAP, we mapped metabolic

changes in CCPAP and in ccRCC (from our earlier study, Hakimi et al., 2016) onto a map of central

carbon metabolism, augmented with the polyol pathway used to produce/metabolize sorbitol

(Figure 2B). Doing so exposed a clear distinction between ccRCC and CCPAP metabolism. While

ccRCC tumors exhibit elevated levels of several metabolites in upper glycolysis (e.g. glucose-6-phos-

phate (G6P) and fructose-6-phosphate (F6P)), levels of G6P and F6P in CCPAP were not different

from normal. In contrast, levels of sorbitol and fructose, the metabolites of polyol pathway, were ele-

vated >30 fold in CCPAP relative to normal tissue. While fructose levels were also elevated in ccRCC

(compared to normal), the levels of fructose were 5-fold higher in CCPAP than in ccRCC (Figure 2B

and C, Figure 2—source data 1).

We also observed that the NADH/NAD ratio, a measure of redox potential of the cell and a

potential readout of respiratory chain function, was also elevated in CCPAP tumors compared to

normal tissue (Figure 2B and D, Figure 2—source data 1). Determination of the NADH/NAD ratio

using metabolomics data is susceptible to artifacts; therefore, we examined our data for other

metabolomic changes which may be associated with an elevated NADH/NAD ratio. Using the

Recon2 genome-scale human metabolic reconstruction (Thiele et al., 2013), we identified all meta-

bolic reactions in the cell dependent on oxidation of NADH/reduction of NAD, and intersected the

list of participating metabolites with those measured in our study. We retained all reactions for which

we measured all substrates and products. Because several of the central metabolites participating in

reactions using NADH/NAD were not quantified in our dataset (e.g. pyruvate, alpha-ketoglutarate,

oxaloacetate, dihydroxyacetone phosphate), a number of canonical NAD-dependent reactions were

not retained. However, we were left with a list of 5 reactions (related to xanthine metabolism, sorbi-

tol metabolism, ascorbate metabolism, and uracil metabolism). For each of these reactions, we cal-

culated the ratio of the abundances of the more oxidized metabolite to the abundance of the more

reduced metabolite (specifically, fructose/sorbitol, uracil/5,6 dihydrouracil, xanthine/hypoxanthine,

urate/xanthine, dehydroascorbate/ascorbate). In conditions of elevated NADH/NAD, we would

expect the chemical equilibrium to shift these ratios lower. Consistent with this, 4 of 5 metabolite

ratios exhibit a drop in CCPAP tumors consistent with an elevated NADH/NAD ratio (i.e. a drop in

the ratio). Interestingly, such a drop is not evident in ccRCC tumors with normal sorbitol levels, but is

Figure 1 continued

DOI: https://doi.org/10.7554/eLife.38986.002

The following source data and figure supplement are available for figure 1:

Source data 1. Metabolomics results.

DOI: https://doi.org/10.7554/eLife.38986.004

Figure supplement 1. Principal components analysis of RC13 data.

DOI: https://doi.org/10.7554/eLife.38986.003
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Figure 2. Metabolic landscape of CCPAP. (A) Heatmap of differentially abundant metabolites among CCPAP (n = 9), ccRCC (n = 10) and matching

normal (n = 10). For visual clarity, only metabolites with Mann-Whitney q < 0.1 and absolute log2 fold-change >1 are displayed; a full table of results is

available in Figure 2—source data 1. Yellow arrows indicate high-sorbitol ccRCC tumors. (B) Pathway map depicting metabolite changes (tumors

relative to normal kidney tissue) in central carbon metabolism. Metabolites in ccRCC (left half of each box) significantly different from CCPAP (right half

of each box) are indicated. (C) Relative abundances of key metabolites in CCPAP, ccRCC or normal tissue in polyol pathway. Yellow dots in ccRCC (Log

Figure 2 continued on next page
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evident in the two sorbitol-high ccRCC tumors (Figure 2—figure supplement 2). While metabolite

abundance is not a surrogate for metabolic flux, a clear pattern of increases to the constituent

metabolites of the polyol pathway (and a concomitant lack of changes to metabolite levels in upper

glycolysis) suggests that CCPAP tumors may be preferentially shunt carbon flux to sorbitol, poten-

tially as an approach for regenerating NAD+ and relieving redox imbalance.

CCPAP exhibits dysfunctional mitochondrial respiration associated with
depletion of mitochondrial DNA and RNA
To further understand the molecular mechanisms driving CCPAP pathology, we utilized several cases

of misclassified CCPAP which had been submitted to and profiled by The Cancer Genome Atlas

(TCGA) consortium in the ccRCC (TCGA ID: KIRC) study. Five suspected cases of CCPAP (BP-4760,

BP-4784, BP-4795, DV-5567, BP-4177) were identified during re-review by the TCGA panel patholo-

gists, including two at our institution as part of the TCGA effort and excluded from the final TCGA

manuscript (Figure 3—figure supplement 1). Importantly, prior to exclusion, each of these tumors

was to some extent molecularly profiled, including by RNA-sequencing, whole-exome sequencing,

methylation profiling, and miRNA sequencing.

To interrogate the molecular mechanism underlying the metabolic changes evident in CCPAP, we

compared gene expression levels between five CCPAP cases, conventional ccRCC tumors, and adja-

cent-normal kidney tissues in the TCGA (Figure 4—source data 1). We identified two sets of differ-

entially expressed genes, which either distinguished CCPAP from adjacent-normal tissue (gN) or

distinguished CCPAP from ccRCC (gC). We then determined the pathways enriched for each gene

set (gN and gC) by gene set enrichment analysis (GSEA). GSEA was performed in an unbiased man-

ner on all 4731 gene sets in the C2/curated gene set collection, as well as all ‘Hallmark’ gene sets,

from the MSigDB database (Subramanian et al., 2005). Among these, we observed that the most

significantly down-regulated gene-sets enriched in either the gN or gC lists were associated with oxy-

gen-dependent mitochondrial metabolism (e.g., ‘MOOTHA_MITOCHONDRIA’ ‘HALLMARK_ OXI-

DATIVE_PHOSPHORYLATION’) (Figure 3C and Figure 3—source data 1). Furthermore, several of

the most significantly up-regulated gene-sets enriched in the gN list of differentially expressed genes

were associated with the hypoxic response (e.g., ELVIDGE_HYPOXIA_UP, q value < 10�5) (Fig-

ure 3—source data 1), consistent with previous findings that HIF is upregulated in CCPAP

(Rohan et al., 2011).

The analysis above suggested that CCPAP tumors downregulated expression of mitochondrial

genes. Mitochondria are heterogeneously composed of proteins encoded in both the 16 kb circular

mitochondrial genome (mtDNA) and the conventional nuclear genome (nDNA). While the vast

majority of mitochondrially-localizing proteins are encoded in nDNA, there are 13 mtDNA-encoded

genes that produce proteins, all of which are essential integral membrane components of the mito-

chondrial electron transport chain or ATP synthase. Although mtDNA (and mRNAs produced from

mtDNA) are highly abundant and typically captured by conventional DNA (often in an off-target

manner) and RNA sequencing, analysis of these 13 genes is not commonly reported by the

TCGA consortium.

Figure 2 continued

Sorbitol plot) indicate high-sorbitol ccRCC tumors. (D) Relative abundances of reduced and oxidized glutathione (GSH and GSSG) and NADH/NAD

ratio in CCPAP, ccRCC or normal tissue. NS, q > 0.1;*,q < 0.1; **, q < 0.01, Mann-Whitney U test., BH-corrected for multiple hypothesis testing.

DOI: https://doi.org/10.7554/eLife.38986.005

The following source data and figure supplements are available for figure 2:

Source data 1. Differential abundance of metabolites.

DOI: https://doi.org/10.7554/eLife.38986.008

Source data 2. Metabolite information related to metabolomics data in RC13.

DOI: https://doi.org/10.7554/eLife.38986.009

Figure supplement 1. Additional metabolomic analysis of CCPAP tumors.

DOI: https://doi.org/10.7554/eLife.38986.006

Figure supplement 2. Comparison of metabolite ratios across different tissue types for metabolites involved in NAD reduction reactions.

DOI: https://doi.org/10.7554/eLife.38986.007
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To evaluate the possibility that the mitochondrial genome may be impacted in CCPAP tumors,

we re-analyzed mitochondrial DNA sequencing reads available in the TCGA data for CCPAP sam-

ples. In prior work, our group estimated mtDNA copy number across ~322 ccRCC samples profiled

by the TCGA, including 2 CCPAP samples misclassified as ccRCC. Re-examining this data, we found

that the 2 CCPAP tumors were among the four samples lowest in mtDNA copy number (Figure 3A,

Mann-Whitney p-value 0.016). Depletion of mtDNA copy number in a tumor cell may lead to a drop

in mtRNA, and a consequent drop in the capacity of the cell to conduct oxygen-dependent mito-

chondrial respiration. Therefore, we evaluated whether mtRNA was reduced in 5 CCPAP samples

profiled by RNA-sequencing by the TCGA using previously computed mtRNA expression levels from

our group (Reznik et al., 2017). In agreement with our finding of mtDNA depletion, CCPAP samples
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Figure 3. CCPAP tumors exhibit suppressed mitochondrial respiration. (A) Plots of log transformed mtDNA copy number of 322 TCGA nominal ccRCC

samples. Two misclassified samples (BP-4760 and BP-4795) were pathologically re-confirmed as CCPAP. (B) Quantification of transcription from the

mitochondrial genomes of tumor or normal samples from different subtypes of kidney cancers. ***, p<0.001, t-test. (C) Gene set enrichment analysis of

transcriptome of CCPAP compared with adjacent normal tissue showing that CCPAP tumors exhibit a downregulation of genes related to

mitochondria, and oxidative phosphorylation. (D) The relative abundance of aspartate and fumarate in CCPAP, ccRCC or normal tissue. NS, q > 0.1; **,

q < 0.01, Mann-Whitney U test following multiple hypothesis correction.

DOI: https://doi.org/10.7554/eLife.38986.010

The following source data and figure supplement are available for figure 3:

Source data 1. RNA (including miRNA) Sequencing Results.

DOI: https://doi.org/10.7554/eLife.38986.012

Source data 2. GSEA results.

DOI: https://doi.org/10.7554/eLife.38986.013

Figure supplement 1. H and E image of 5 misclassified TCGA-KIRC samples, which has been re-evaluated to be CCPAP.

DOI: https://doi.org/10.7554/eLife.38986.011
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exhibited a > 2 fold reduction in mtRNA levels compared to ccRCC tumor samples (t-test using TPM

estimates from Reznik et al., 2017, p-value 0.0002, Figure 3B) and a > 3 fold reduction in mtRNA

levels compared to adjacent-normal tissue in the KIRC study (p-value 10�6, Figure 3B). Analysis

using nuclear-DNA encoded, mitochondrially-localizing genes (rather than genes encoded in the

mitochondrial genome) yielded similar results: of the 852 genes in the Mitochondrion GO geneset

and expressed at a minimal level in CCPAP tumors, 411 were downregulated and 99 were upregu-

lated in CCPAP tumors compared to normal tissues (Figure 4—figure supplement 1A). Consistent

with the down-regulation of mitochondrial function due to mtDNA depletion, we found when re-vis-

iting CCPAP metabolomics data that the abundance of aspartate, a metabolite whose abundance is

dependent on normal function of the mitochondrial respiratory chain for its production, was reduced

3.5-fold in CCPAP relative to adjacent normal tissues (Figure 3D). Fumarate, another metabolite typ-

ically considered to mitochondria-specific, was also reduced 4-fold in CCPAP relative to normal tis-

sue (Figure 3D). Altogether, the evidence of mtDNA and mtRNA depletion suggests that

expression of mtDNA-encoded proteins is suppressed in CCPAP tumors.

CCPAP tumors harbor a largely intact nuclear genome
Given the distinct landscape of metabolic and transcriptomic alterations characterizing CCPAP, we

sought to determine if CCPAP tumors were driven by genetic alterations similar to those driving

more common kidney cancer types, for example ccRCC or pRCC. To do so, we completed whole-

genome sequencing on 5 CCPAP tumors and whole-exome sequencing on 2 CCPAP tumors. Identi-

fied somatic variants were pooled with 3 CCPAP tumors profiled by exome sequencing in the

TCGA.

The results of the sequencing analysis revealed that CCPAP tumors have a characteristically low

mutational burden when compared to ccRCC tumors (Figure 4A, Figure 3—source data 2), and

that all CCPAP tumors were both VHL and TCEB1 wild type. Furthermore, we failed to identify a sin-

gle gene which was non-synonymously mutated in more than one sample. Notably, several of the

non-synonymous mutations in CCPAP tumors were in genes previously associated with oncogenesis

(e.g. GNAQ), but these mutations were not enriched in genes of any particular pathway or gene set.

Finally, using an allele-specific copy number detection algorithm (FACETS) (Shen and Seshan,

2016), we found that CCPAP tumors are remarkably ‘copy-number quiet,’ exhibiting few if any focal

copy number alterations and no arm-level copy number alterations (Figure 4B and C). Using the

whole-genome sequencing data, we also evaluated whether CCPAP tumors exhibited potentially

oncogenic structural variants (e.g. fusions or rearrangements, see Materials and methods). We iden-

tified few genomic rearrangements in the 5 WGS samples (8–12 rearrangements per sample). How-

ever, none of these were high-confidence as they were reported by <10 reads and were not

associated with a copy number change. Thus, the sequencing data available to us does not support

the presence of a recurrent genetic driver in CCPAP tumors.

We were further able to use mtDNA reads from the whole-exome and whole-genome sequencing

of confirmed CCPAP samples from our institution to verify the mtDNA depletion phenotype

described earlier in the 5 TCGA samples. Using an approach similar to that described in

Reznik et al. (2016), we estimated mtDNA copy number in all samples for which we had both tumor

and adjacent-kidney normal. Relative to normal kidney, we found that CCPAP tumors are

approximately ~10 fold depleted of mtDNA (Figure 4D).

It is known that inactivating mutations to genes which are essential for mtDNA replication, main-

tenance, and biosynthesis (e.g. POLG, TK2) can result in severe depletion of mtDNA and cause auto-

somally recessive heritable disorders (El-Hattab and Scaglia, 2013). Using a manually curated list of

genes (Figure 4—source data 1) known to lead to mtDNA depletion or other mtDNA-associated

disorders, we evaluated the possibility that these genes may be somatically inactivated (i.e. by trun-

cating or otherwise loss-of-function mutations) in CCPAP tumors. We found no non-synonymous

mutations in any gene in our manually curated list. We also examined the possibility that other

changes, for example alterations to regulatory regions in the genome, may alter the gene expression

of essential mtDNA maintenance genes in CCPAP. Using the results of our differential gene expres-

sion analysis, we found no mtDNA maintenance genes which were significantly (q < 0.05) differen-

tially expressed in CCPAP relative to both ccRCC and adjacent-normal tissue.

We further evaluated the possibility that somatic changes to the mitochondrial genome itself,

for example mtDNA mutations, may themselves be contributing to the mtDNA depletion phenotype
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Figure 4. CCPAP tumors show few somatic alterations to the nuclear genome, but recurrent depletion of the mitochondrial genome. (A) Mutational

burden of CCPAP tumors from both MSKCC and TCGA as well as ccRCC from TCGA. Highlighted in the boxes are COSMIC cancer gene census genes

which are mutated in either MSKCC (red) or TCGA (blue) CCPAP tumors. Notably, there is not a single gene which is non-synonymously mutated more

than once in CCPAP. (B) Copy number profile of CCPAP tumor sample 284. (C) The fraction of copy-number altered genome from CCPAP tumors

profiled by both MSKCC and TCGA, as well as ccRCC tumors profiled by TCGA. (D) The relative mtDNA copy number in CCPAP and adjacent-normal

tissues that were sequenced by either whole-exome-sequencing or whole-genome-sequencing. (E) Somatic variants identified by ultra-deep targeted

duplex sequencing of mtDNA of CCPAP tumors.

DOI: https://doi.org/10.7554/eLife.38986.014

The following source data and figure supplement are available for figure 4:

Source data 1. Mutation annotation file.

DOI: https://doi.org/10.7554/eLife.38986.016

Figure supplement 1. Mitochondrial gene expression analysis of CCPAP tumors.

DOI: https://doi.org/10.7554/eLife.38986.015
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we are observing. Using ultra-deep duplex sequencing of mtDNA in CCPAP tumor and adjacent-

normal or blood samples (eight total samples), we evaluated whether deleterious/pathogenic

mtDNA somatic variants exist in CCPAP samples. As shown in Figure 4E, we observed a handful of

non-synonymous mtDNA mutations, with a frequency of <1 non-synonymous somatic mutation per

sequenced tumor. All identified coding variants were missense mutations, and were not annotated

in the literature to have deleterious consequences (using MITOMAP [Lott et al., 2013]).

Finally, to evaluate if DNA methylation changes may underlie CCPAP pathogenesis, we examined

TCGA data on DNA methylation from 4 CCPAP cases (BP-4784, BP-4795, DV-5567, BP-4177, see

Materials and methods, Figure 5—figure supplement 1B). Principal components analysis of this

data indicated that CCPAP cases did not cluster separately, but instead co-localized with adjacent-

normal kidney tissue, rather than ccRCC tumor samples. This suggests that, from a DNA methylation

perspective, CCPAP tumors resemble normal kidney tissue.

Taken together, the results above suggest that CCPAP tumors harbor a (likely small) set of cryptic

driver alterations which were not identified by our profiling efforts. Such alterations may include, but

are not limited to, mutations to enhancer or promoter regions, as well as epigenetic alterations (e.g.

methylation). Our failure to identify recurrent mutations or copy number alterations is not atypical in

the context of our institution’s clinical sequencing experience; in fact,~8% of all tumors prospectively

deep sequenced for alterations in 341 cancer-associated genes fail to show a single mutation

(Zehir et al., 2017). Our results so far demonstrate that in spite of the paucity of evident genomic

drivers, such tumors can nevertheless manifest with a striking molecular phenotype.

Immunohistochemical validation of the molecular phenotype of CCPAP
We sought to validate that CCPAP-specific depletion of respiratory genes is not an artifact of TCGA

profiling, and to confirm that the depletion of the mitochondrial genome is specific to CCPAP tumor

cells, as opposed to other cells in the tumor microenvironment. To do so, we performed immunohis-

tochemical (IHC) staining for mtDNA-encoded MT-CO1, which recognizes the mtDNA-encoded

cytochrome c oxidase subunit 1, and for TOM20 which recognizes a nuclear-DNA-encoded mito-

chondrial import receptor subunit. Consistent with our prior results, we found that the intensity of

both TOM20 and MT-CO1 was significantly lower in CCPAP compared with ccRCC and adjacent

normal tissue (Figure 5A). A more comprehensive quantification using tissue array samples from dif-

ferent subtypes of renal cell carcinoma also confirmed that CCPAP has the lowest MT-CO1 H-score

(Figure 3—source data 2, Figure 5B). In total, this data suggests that CCPAP tumors exhibit highly

reduced protein expression of both nDNA and mtDNA-encoded respiratory genes.

Next, we evaluated whether signatures of elevated oxidative stress were evident in CCPAP

tumors. High levels of glutathione and opthalmate (a glutathione analog) in CCPAP (relative to nor-

mal kidney tissue as well as to ccRCC) suggest the cells have been rewired to combat high levels of

oxidative stress. Moreover, microRNA analysis showed that the miR200 family (miR200a,b,c,

miR429), which has been shown to be induced by oxidative stress and which suppresses the epithe-

lial-mesenchymal transition (EMT), are upregulated in CCPAP relative to ccRCC (Figure 5—figure

supplement 1A, Figure 4—source data 1), consistent with a previous report (Lawrie et al., 2014).

To evaluate oxidative stress levels directly, we performed IHC staining of 8-oxo-2’-deoxyguanosine

(8-oxo-dG), a marker of oxidative stress, on CCPAP tumor tissue, ccRCC tumor tissue, as well as

adjacent normal tissue. We found that the intensity of 8-oxo-dG was higher in CCPAP compared

with ccRCC and adjacent normal tissue (Figure 5C). A more comprehensive quantification using tis-

sue array samples comprised of different subtypes of renal cell carcinoma also showed CCPAP has

the highest 8-oxo-dG H-score (Figure 5D, Figure 5—source data 1). Importantly, data from our

group and others have repeatedly demonstrated that elevation of glutathione is generically

observed across many RCC histologies, including but not limited to clear-cell, chromophobe, and

oncocytomas (Hakimi et al., 2016; Gopal et al., 2018; Priolo et al., 2018). Our data here suggests

that an elevated response to oxidative stress is particularly pronounced in CCPAP tumors, but can-

not be used to distinguish them from other histologies.

High levels of 8-oxo-dG may indicate excess DNA damage as well as oxidative stress. Specifically,

oxidation of guanine bases is associated with a high prevalence of C:G > A:T transversions, typically

associated with Signature 18 in the COSMIC database of mutation signatures. To determine if high

levels of 8-oxo-dG in CCPAP tumors may be a readout of oxidative DNA damage, we analyzed the

trinucleotide context of somatic mutations in all available CCPAP tumor samples (Figure 5—figure
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Figure 5. Immunohistochemical and histological characterization of CCPAP tumors. (A) Representative IHC

staining of mtDNA-encoded MT-CO1 and nuclear-DNA-encoded/mitochondrially-localized TOM20 of CCPAP,

ccRCC tumors and adjacent normal tissues. (B) H-scores of immunohistochemical (IHC) staining for the mtDNA-

encoded MT-CO1 protein across different subtypes of kidney cancers (pRCC, papillary RCC; chRCC,

Figure 5 continued on next page
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supplement 2). Interestingly, CCPAP tumors did not show an enrichment of C:G > A:T mutations,

suggesting that the mutations arising in CCPAP are not the consequence of excess oxidative dam-

age. Together with their low mutation burden, we interpret this to mean that 8-oxo-dG is reporting

high levels of oxidative stress which are being sufficiently handled by the cell’s stress response (e.g.

elevated GSH levels) so as to not generate excess oxidative-stress-associated somatic mutations.

When stained with Haemotoxylin and Eosin (H and E), both CCPAP and ccRCC tumors display a

clear cytoplasm. In ccRCC, this clear cytoplasm arsises from accumulated lipid and glycogen con-

tents removed during fixation and processing for histology. To compare the composition of clear

cytoplasm in CCPAP to ccRCC tumors, we stained specimens from both tumor types with Oil Red O

(for lipids) and PAS and PAS-Diastase (for glycogen). Both CCPAP and ccRCC stained positively for

PAS and were sensitive to diastase treatment (PAS-diastase) (Figure 5E), indicating the presence of

cytoplasmic glycogen in both tumor types. However, unlike ccRCC tumors which stained diffusely

positive for Oil Red O, CCPAP tumors are Oil Red O negative (Figure 5E). Consistently, the RC13

metabolomics data indicated that CCPAP and ccRCC tumors showed elevated levels of maltose,

maltotriose, and maltotetraose (surrogates of glycogen content) compared to normal tissue (Fig-

ure 2—source data 1). Meanwhile, the RC13 metabolomics data showed that CCPAP tumors are

depleted of a variety of lipid classes compared to both ccRCC and adjacent normal kidney tissue

(Figure 2A). Together, these results indicate that CCPAP tumors do not contain high levels of intra-

cytoplasmic lipids, and that the cytoplasmic clarity in CCPAP tumors is due to reasons distinct from

those in ccRCC tumors.

Discussion
In this work, we have described a distinct class of kidney tumors characterized not by their genetics,

but by their metabolism. We subjected CCPAP tumors to a battery of comprehensive genomic pro-

filing, much of which was beyond the conventional clinical-grade targeted genetic sequencing

offered to cancer patients for identification of driver alterations. With the exception of a single recur-

rent genotype (mtDNA depletion), no clear pattern of somatic alterations was evident in CCPAP

tumors. On the other hand, metabolic analysis readily distinguished CCPAP tumors from their ccRCC

counterparts, and identified a striking metabolic disruption in the polyol pathway that defined the

metabolic phenotype. While genetic/epigenetic alterations are certainly the drivers of all (or nearly

all [Mack et al., 2014]) cancers, our data reinforces the notion that such driver alterations need not

be the distinguishing molecular feature of the tumor itself. In analogy to the morphology and histol-

ogy of a tumor, which arise from the tumor’s somatic alterations but are fundamentally distinct char-

acteristics for tumor diagnosis and treatment, we propose that metabolism itself may (at least for

some tumor types) be equally illuminating (Peng et al., 2018; Reznik et al., 2018). In particular, it

Figure 5 continued

chromophobe RCC) **, p<0.01, ***, p<0.001, ****, p<0.0001, t-test. (CCPAP, n = 11; ccRCC, n = 7; pRCC, n = 2;

chRCC, n = 4; oncocytoma, n = 4) (C) Representative IHC staining of 8-oxo-dG of CCPAP and ccRCC tumors. (D)

H-score of IHC staining for 8-oxo-dG across different subtypes of kidney cancers. *, p<0.05, t-test. (CCPAP, n = 14;

ccRCC, n = 3; pRCC, n = 3; oncocytoma, n = 2) (E) Representative images showing the CCPAP and ccRCC tumor

regions stained with Oil-Red-O, Periodic acid–Schiff (PAS), and PAS diastase (n = 3 for each staining).

DOI: https://doi.org/10.7554/eLife.38986.017

The following source data and figure supplements are available for figure 5:

Source data 1. Score for MT-CO1 IHC and 8-oxo-dG IHC.

DOI: https://doi.org/10.7554/eLife.38986.021

Figure supplement 1. MicroRNA and methylation analysis of CCPAP tumors.

DOI: https://doi.org/10.7554/eLife.38986.018

Figure supplement 2. Mutation signature analysis of CCPAP tumor samples.

DOI: https://doi.org/10.7554/eLife.38986.019

Figure supplement 3. Heatmaps showing intersample correlations (red, positive; blue, negative) between profiles

of 5 CCPAP tumors profiled by TCGA as well as average ccRCC (KIRC), chRCC (KICH) and pRCC(KIRP) (rows) and

profiles of human and mouse kidney nephron sites (column).

DOI: https://doi.org/10.7554/eLife.38986.020
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suggests that the study of cancers of unknown driver (which account for ~8% of all sequenced

tumors at our institution) may benefit from holistic (i.e. non-genomic) profiling, including but not lim-

ited to epigenomic, proteomic, and metabolomic measurements.

The severe respiratory dysfunction in CCPAP argue for a new schema for understanding meta-

bolic reprogramming in renal cell carcinomas in general. As described earlier, each of the common

types of RCC are characterized in part by mitochondrial dysfunction: HIF activation and suppression

of mitochondrial biogenesis in clear cell RCC, FH mutations in HLRCC, and mtDNA mutations in

chromophobe RCC. Rare subtypes of RCC further support the recurring theme of mitochondrial dys-

function: mitochondrial Complex II dysfunction in SDH-mutant RCC, and loss-of-function mtDNA

mutations in renal oncocytomas. Therefore, we propose here a ‘mitochondrial spectrum’ to describe

the metabolism of RCCs, which is defined by the respective quantity and integrity of mitochondria in

each RCC subtype (as reflected by the H-score of MT-CO1 shown in Figure 5B). At the far left end

are CCPAP tumors, severely depleted of mtDNA and respiratory capacity. At the other end are

oncocytomas, which accumulate massive mitochondrial mass as a response to pathogenically

mutated mtDNA. Resting between these two extremes are the remaining cancer types, beginning

with mtDNA-depleted clear cell tumors and proceeding to chromophobe renal cell carcinomas.

Looking ahead, it will be interesting to understand how each of these tumors copes with its respec-

tive form of mitochondrial dysfunction; that is, if a depletion of mtDNA induces a different metabolic

adaptation than a loss-of-function mutation to mtDNA.

While CCPAP tumors exhibit a uniquely high abundance of sorbitol, this should not be miscon-

strued as an indicator that flux through the polyol pathway has increased. Without the direct mea-

surement of metabolic flux, it is not possible to disambiguate whether increased levels of polyols

reflect increased flux through the polyol pathway, or conversely are the consequence of decreased

catabolism of metabolites downstream of polyol compounds. However, additional interpretation of

the metabolomics data may offer a clue toward resolving this question. Both of the terminal compo-

nents of the polyol pathway (sorbitol-6-phosphate and fructose) are elevated in CCPAP tumors and

correlated to the levels of sorbitol. This suggests that, if the accumulation of sorbitol is due to

decreased utilization of metabolites downstream of sorbitol, the ‘choke-point’ most likely occurs

after fructose and/or sorbitol-6-phosphate. Furthermore, studies of metabolomic changes associated

with mitochondrial disease indicate that sorbitol accumulation is not a generic consequence of mito-

chondrial dysfunction, although its elevation has been observed in the blood of patients with pro-

gressive external ophthalmoplegia (Esterhuizen et al., 2017). Together, this suggests that a

combination of factors likely contribute to the accumulation of sorbitol in CCPAP.

It is furthermore notable that although the metabolomic and transcriptomic evidence available is

suggestive of a down-regulation of oxidative phosphorylation in CCPAP, these tumors did not

exhibit an obvious compensatory up-regulation of glycolysis. Specifically, lactate levels in CCPAP

tumors were not elevated relative to normal tissue or ccRCC, nor were any other intermediates of

glycolysis (Figure 2, Figure 2—source data 1). If glycolytic flux is indeed not increased in compensa-

tion, this may ultimately reflect the indolent and slow-growing nature of these tumors.

Different histologies of renal cell carcinoma are believed to arise from distinct cells in the human

nephron. On the basis of gene expression data, ccRCC and papillary RCC (pRCC) are believed to

derive from proximal tubule cells, while chromophobe RCC (chRCC) is believed to arise from the dis-

tal tubule. Because CCPAP is rare and slow-growing, no commercial CCPAP cell lines are available

as models. To infer the cell-of-origin of CCPAP, we compared the transcriptomic profiles (from the

TCGA) of ccRCC, pRCC, chRCC, and CCPAP with transcriptional profiles of microdissected regions

of mouse kidney (Cheval et al., 2012). Doing so, we found that while ccRCC and pRCC tumors most

resemble cells of the proximal tubule and chRCC tumors resemble cells of the distal tubule, CCPAP

tumors resemble cells of the collecting duct (Figure 5—figure supplement 3). This is consistent with

prior immunohistochemical findings showing that CCPAP tumors stain positive for the collecting

duct marker 34BE12 (Cheval et al., 2012). Based on these findings, future efforts at developing in

vitro models of CCPAP may benefit from use of collecting duct cells. It will be of particular interest

to determine if the unique activity of the polyol pathway evident in CCPAP tumors is reflected in the

metabolism of the collecting duct.

An interesting aspect of CCPAP RCC is that despite wild-type VHL and TCEB1, CCPAP tumors

display upregulated HIF1 protein as well as elevated levels of downstream HIF targets (CA9, GLUT1)

by IHC staining (Rohan et al., 2011). Consistently, our gene set enrichment analysis comparing
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CCPAP and normal tissues also show that the hypoxic response is among the most upregulated

pathways (Figure 3—source data 1). Meanwhile, CCPAP tumors displayed biomarkers indicative of

elevated levels of oxidative stress compared with CCRCC or normal tissues. Conceivably, high levels

of oxidative stress could inhibit prolyl hydroxylase (PHD) activity to prevent the hydroxylation of HIF

and subsequent VHL-dependent degradation (Mansfield et al., 2005; Pan et al., 2007), which

would be responsible for HIF activation in CCPAP. Other, previously undescribed mechanisms may

also be the source of HIF activation in CCPAP. Interestingly, both HIF activation and oxidative stress

have been shown to cause mtDNA depletion (Zhang et al., 2007; Mansouri et al., 1999;

Chen et al., 2001; Suliman et al., 2003; Shokolenko et al., 2009). Therefore, it is possible the high

level of oxidative stress and the consequent HIF activation in CCPAP could cooperatively induce

mtDNA depletion.

Materials and methods

Key resources table

Reagent type
(species) or
resource Designation Source or reference Identifiers

Additional
information

Antibody Rabbit Anti-
TOM20 Antibody

Santa Cruz
Biotechnology

Cat# sc-11415,
RRID:AB_2207533

IHC (1:100)

Antibody Mouse Anti-
MTCO1 Antibody

Abcam Cat# ab14705,
RRID:AB_2084810

IHC (1:2000)

Antibody Mouse Anti-8-
Oxo-dG Antibody

Genox
Corpooration

Cat# MOG-020P,
RRID:AB_1106819

IHC (1:400)

Sample acquisition and preparation for sequencing
Human whole exome sequencing library preparation and sequencing 51 Mb. Libraries were pre-

pared using the Agilent SureSelect XT Target Enrichment System in accordance with the manufac-

turer’s instructions. Briefly, 1500 ng of DNA was sheared using a Covaris LE220 sonicator (adaptive

focused acoustics). DNA fragments were end-repaired, adenylated, ligated to Illumina sequencing

adapters, and amplified by PCR (using six cycles). Exome capture was subsequently performed using

500–750 ng of the DNA library and the Agilent SureSelectXT V4 Human All Exon capture probe set.

Captured exome libraries were then enriched by PCR (using 10 cycles). Final libraries were evaluated

using fluorescent-based assays including PicoGreen (Life Technologies) or Qubit Fluorometer (invi-

trogen) and Fragment Analyzer (Advanced Analytics) or BioAnalyzer (Agilent 2100), and were

sequenced on an IlluminaHiSeq2500 sequencer (v4 chemistry, v2 chemistry for Rapid Run) using 2 �

125 bp cycles. Normal and tumor samples were sequenced a depth of 80X and 150X, respectively.

WGS library preparation and sequencing, Truseq PCR-free (450 bp). Whole genome sequencing

(WGS) libraries were prepared using the Truseq DNA PCR-free Library Preparation Kit in accordance

with the manufacturer’s instructions. Briefly, 1 ug of DNA was sheared using a Covaris LE220 sonica-

tor (adaptive focused acoustics). DNA fragments underwent bead-based size selection and were

subsequently end-repaired, adenylated, and ligated to Illumina sequencing adapters. Final libraries

were evaluated using fluorescent-based assays including qPCR with the Universal KAPA Library

Quantification Kit and Fragment Analyzer (Advanced Analytics) or BioAnalyzer (Agilent2100). Librar-

ies were sequenced on an Illumina HiSeq X sequencer (v2.5 chemistry) using 2 � 150 bp cycles. Nor-

mal and tumor samples were sequenced a depth of 40X and 80X, respectively.

Alignment
Short insert paired-end reads were aligned to the GRCh37 reference human genome with 1000

genomes decoy contigs using BWA-mem (Li and Durbin, 2010).

Somatic mutation calling
Substitution
Single base substitutions were called using CaVEMan (Cancer Variants through Expectation Maximi-

sation) (http://cancerit.github.io/CaVEMan/). As described previously (Nik-Zainal et al., 2012), the
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algorithm compares sequence data from each tumour sample to its own matched non-cancerous

sample and calculates a mutation probability at each genomic locus. Copy number and cellularity

information for CaVEMan were predicted with the Battenberg algorithm (Nik-Zainal et al., 2012)

using 1000 Genomes (Abecasis et al., 2012) loci within the NGS data. To improve specificity, a num-

ber of post-processing filters were applied as follows:

1. At least a third of the alleles containing the mutant must have base quality >= 25.
2. If mutant allele coverage >= 10X, there must be a mutant allele of at least base quality 20 in

the middle 3rd of a read. If mutant allele coverage is <10X, a mutant allele of at least base
quality 20 in the first 2/3 of a read is acceptable.

3. The mutation position is marked by <3 reads in any sample in the unmatched normal panel.
4. The mutant allele proportion must be >5 times than that in the matched normal sample (or it

is zero in the matched normal).
5. If the mean base quality is <20 then less than 96% of mutations carrying reads are in one

direction.
6. Mutations within simple repeats, centromeric repeats, regions of excessive depth (https://

genome.ucsc.edu/) and low mapping quality were excluded.

Additional unmatched normal filtering was performed using a set of unmatched normal samples.

Mutations that were detected in >5% of the unmatched normal normal panel at >= 5% mutant allele

burden were excluded.

Variant annotation was done in Ensembl v74 using VAGrENT (Menzies et al., 2015).

Small insertions and deletions
Small somatic insertions and deletions (indels) were identified using a modified version of Pindel

(https://github.com/cancerit/cgpPindel) (Raine et al., 2015). To improve specificity, a number of

post-processing filters were applied that required the following:

1. For regions with sequencing depth <200X, mutant variant must be present in at least 8% of
total reads.

2. For regions with sequencing depth >= 200X, mutant variant must be present in at least 4% of
total reads.

3. The region with the variant should have <= 9 small (<4 nucleotides) repeats.
4. The variant is not seen in any reads in the matched normal sample or the unmatched normal

panel.
5. The number of Pindel calls in the tumour sample is greater than four and either:

a. The number of mutant reads mapped by BWA in the tumour sample is greater than 0 or
b. The number of mutant reads mapped by BWA in the tumour sample is equal to 0 but

there are no repeats in the variant region and there are reads mapped by Pindel in the
tumour sample on both the positive and negative strand.

6. Pindel ‘SUM-MS’ score (sum of the mapping scores of the reads used as anchors)>=150

Additional unmatched normal filtering was performed using a set of unmatched normal samples

(n = 221). Mutations that were detected in >1% of the unmatched normal normal panel at >= 1%

mutant allele burden were excluded.

Variant annotation was done in Ensembl v74 using VAGrENT (Menzies et al., 2015).

Structural rearrangements
Structural rearrangements were detected by an in house algorithm, BRASS (Breakpoints via assem-

bly) [https://github.com/cancerit/BRASS], which first groups discordant read pairs that span the

same breakpoint and then using Velvet de novo assembler (Zerbino and Birney, 2008) performs

local assembly within the vicinity to reconstruct and determine the exact position of the breakpoint

to nucleotide precision.

Copy number changes
Segmental copy number information was derived for each sample using the Battenberg algorithm as

previously described (Nik-Zainal et al., 2012). Briefly, the algorithm phases heterozygous SNPs with

use of the 1000 genomes genotypes as a reference panel. The resulting haplotypes are corrected

for occasional errors in phasing in regions with low linkage disequilibrium. After segmentation of the
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resulting b-allele frequency (BAF) values, t-tests are performed on the BAFs of each copy number

segment to identify whether they correspond to the value resulting from a fully clonal copy number

change. If not, the copy number segment is represented as a mixture of 2 different copy number

states, with the fraction of cells bearing each copy number state estimated from the average BAF of

the heterozygous SNPs in that segment. The Battenberg algorithm could not be applied to chromo-

some X since BAFs are uninformative for male subjects. For this chromosome, logR values were seg-

mented and segmented logR values were converted to copy number estimates as described

previously (Van Loo et al., 2010).

Without application of the Battenberg algorithm, the resolution of subclonal copy number states

is not possible, so copy number segments are called as single integer values (corresponding to the

copy number state of the dominant cancer clone) on chromosome X.

Mutational signature analysis
Mutational signature analysis of the substitutions was performed using the R package Deconstruct-

Sigs (Rosenthal et al., 2016). Small insertion/deletions were interrogated for the presence of either

short tandem repeat or microhomology at the breakpoints as described previously (Nik-

Zainal et al., 2016). Complex indels were excluded from this analysis.

Duplex mtDNA sequencing
Duplex Sequencing was performed as previously described (Kennedy et al., 2014) with the follow-

ing modifications. Adapters were ligated to 100 ng of sheared DNA using the NEBNext Ultra II end-

repair/dA-tailing and ligation kit (New England BioLabs) according to the manufacturer’s instruc-

tions. The concentration of adapter ligated mtDNA was quantified by qPCR using the following

primer sequences: 5’GTGACTGGAGTTCAGACGTGTGC and 5’-CCTCAACAGTTAAATCAACAA and

a standard curve composed of ~400 bp of l-phage DNA flanked with the same primer binding sites.

After quantification, approximately 1 � 106 copies of fragmented adapter ligated mtDNA molecules

werePCR amplified using KAPA HiFi DNA polymerase (Roche) as described in Kennedy et al.

(2014). The mtDNA was enriched using IDT xGen Lockdown probes (Integrated DNA Technologies)

specific for human mtDNA and following the manufacturer’s instructions. Each sample was

sequenced with approximately 1 � 107 150 bp paired-end reads on an Illumina NextSeq 500

platform.

The data were processed as previously described (Kennedy et al., 2014). To quantify the fre-

quency of somatic mutations (i.e. not inherited), we used a clonality cutoff excluding any genomic

positions with variant occurring at >1% or a depth of <100X and scoring each type of mutation only

once at each genomic position. Additionally, all amino acid changes were also cataloged using soft-

ware developed in-house and available upon request.

Metabolomics
Metabolomic analysis of primary tumor and adjacent-normal tissue specimens in the RC13 dataset

was conducted with Metabolon, Inc The protocol was identical to that described in Hakimi et al.

(2016), and is described in detail below.

Sample acquisition
Tumors were obtained from patients after acquiring written informed consent and Memorial Sloan

Kettering Cancer Center institutional review board approval. Partial or radical nephrectomies per-

formed at Memorial Sloan Kettering Cancer Center (New York) were obtained by and stored at the

MSK Translational Kidney Research Program (TKCRP). Samples were fresh frozen and stored at �80

degrees Celsius prior to metabolomic characterization. Clinical metadata including tumor pathologic

and clinical stage, nuclear grade, metastatic status, and patient characteristics were recorded. All

samples were reviewed by two expert genitourinary pathologists to confirm CCPAP or ccRCC

histology.

Sample preparation
The sample preparation process was carried out using the automated MicroLab STAR system from

Hamilton Company. Sample preparation was conducted using a proprietary series of organic and

Xu et al. eLife 2019;8:e38986. DOI: https://doi.org/10.7554/eLife.38986 17 of 25

Research article Cancer Biology Genetics and Genomics

https://doi.org/10.7554/eLife.38986


aqueous extractions to remove the protein fraction while allowing maximum recovery of small mole-

cules. The resulting extract was divided into two fractions; one for analysis by LC and one for analysis

by GC. Samples were placed briefly on a TurboVap (Zymark) to remove the organic solvent. Each

sample was then frozen and dried under vacuum. Samples were then prepared for the appropriate

instrument, either LC/MS or GC/MS.

LC/MS
The LC/MS portion of the platform used Waters ACQUITY UPLC and a Thermo-Finnigan LTQ mass

spectrometer, which consisted of an electrospray ionization (ESI) source and linear ion-trap (LIT)

mass analyzer. The sample extract was split into two aliquots, dried, then reconstituted in acidic or

basic LC-compatible solvents. Extracts reconstituted in acidic conditions were gradient eluted using

water and methanol both containing 0.1% Formic acid, while the basic extracts, which also used

water/methanol, contained 6.5 mM Ammonium Bicarbonate. One aliquot was analyzed using acidic

positive ion optimized conditions and the other using basic negative ion optimized conditions in two

independent injections using separate dedicated columns. The MS analysis alternated between MS

and data-dependent MS2 scans using dynamic exclusion.

GC/MS
Samples analyzed with GC/MS were re-dried under vacuum desiccation for a minimum of 24 hr prior

to being derivatized under dried nitrogen using bistrimethyl-silyl-triflouroacetamide (BSTFA). The

GC column was 5% phenyl and the temperature ramp is from 40˚ to 300˚ C in a 16 min period. Sam-

ples were analyzed on a Thermo-Finnigan Trace DSQ fast-scanning single-quadrupole mass spec-

trometer using electron impact ionization. The instrument was tuned and calibrated for mass

resolution and mass accuracy on a daily basis. The information output from the raw data files was

automatically extracted as discussed below.

Accurate mass determination and MS/MS fragmentation (LC/MS), (LC/MS/
MS)
The LC/MS portion of the platform was based on a Waters ACQUITY UPLC and a Thermo-Finnigan

LTQ-FT mass spectrometer, which had a linear ion-trap (LIT) front end and a Fourier transform ion

cyclotron resonance (FT-ICR) mass spectrometer backend. For ions with counts greater than 2 mil-

lion, an accurate mass measurement could be performed. Accurate mass measurements could be

made on the parent ion as well as fragments. The typical mass error was less than five ppm. Ions

with less than two million counts require a greater amount of effort to characterize. Fragmentation

spectra (MS/MS) were typically generated in data dependent manner, but if necessary, targeted MS/

MS could be employed, such as in the case of lower level signals.

Data extraction and quality assurance
The data extraction of the raw mass spec data files yielded information that could loaded into a rela-

tional database and manipulated without resorting to BLOB manipulation. Once in the database the

information was examined and appropriate QC limits were imposed. Peaks were identified using

Metabolon’s proprietary peak integration software, and component parts were stored in a separate

and specifically designed complex data structure.

Compound identification
Metabolites were definitively identified based on comparison to an in-house library of standards

from Metabolon. Data on each of these standards included retention index, mass-to-charge ratio,

and MS/MS spectra. Parameters for each of these three features for each compound in the metabo-

lomic data were compared to analogous parameters in this library. As described in Evans et al.

(2009), compound identification was based on three criteria: retention index within 75 RI units of

the proposed identification, mass to within 0.4 m/z, and MS/MS forward and reverse match scores.
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Data normalization
Each compound was corrected in run-day blocks by registering the medians to equal one (1.00) and

normalizing each data point proportionately. The abundance of each compound was subsequently

divided by the median abundance of that compound across all samples. As all statistical analyses of

the data were non-parametric (see below), this median normalization was largely for the purposes of

ease of analysis and data visualization.

Data imputation
For instances when metabolite levels were below the level of detection, the level was imputed to be

the lowest measured abundance of that compound across all samples.

Determination of statistically significant changes in abundance
Non-parametric Mann-Whitney U tests were used for determination of differential abundance. All

p-values were multiple-hypothesis corrected using the Benjamini-Hochberg procedure. The abun-

dance reported for a given metabolite is the area for the peak that corresponds to the unadducted

compound, as determined from the ion mass and comparison to the library entry. No adducts were

merged into a single value.

RC15 metabolomics
A Shimadzu Nexera X2 UHPLC combined with an AB Sciex TripleTOF 5600 of DuoSpray Ion Source

was used in this study. The system was controlled by AB Sciex Analyst 1.7.1 instrument acquiring

software. A Supelco Ascentis Express HILIC (7.5 cm �3 mm, 2.7 mm) column was used with mobile

phase (A) consisting of 5 mM NH4OAc and 0.1% formic acid; mobile phase (B) consisting of 98%

acetonitrile, 2% 5 mM NH4OAc and 0.1% formic acid. Gradient program: mobile phase (B) was held

at 90% for 0.5 min and then increased to 50% in 3 min; then to 99% in 4.1 min and held for 1.4 min

before returning initial condition. The column was held at 40˚C and 8 ml of sample was injected into

the LC–MS/MS with a flow rate of 0.4 ml/min. Calibrations of TOFMS were achieved through refer-

ence APCI source with average mass accuracy of less than five ppm. Key MS parameters: Mass range

50–800 Da, declustering potential (DP) �80V, collision energy (CE) �30 eV with 15 eV spread, ion

Release Delay (iRD) 30 V, ion Release Width (iRW) 15V: source parameters: curtain gas 30 psi, GS1

50 psi, GS2 50 psi, source temperature 500 C, ISVF 4000 volts for negative acquisition. TOF scan fol-

lowed by 49 high sensitivity TOF MS/MS product ion scans were set on the each cycle of MS

method. Data Processing Software included Sciex PeakView 2.2, MasterView 1.1, LibraryView (64

bit) and MultiQuant 3.0.2.

t-SNE Analaysis
Log-2 transformed metabolomics data was analyzed using the rtsne R package with perplexity set to

5. Error were observed to stabilize after approximately n = 1000 iterations.

Transcriptomic analysis
Gene expression profiles were downloaded from firebrowse.org for the relevant TCGA studies. Dif-

ferential expression was completed using the limma voom package, and gsea was completed using

gseapy (Kuleshov et al., 2016).

microRNA analysis was done using batch-corrected miRNA profiles from Chen et al. (2016). miR-

NAs with expression greater than 20 were evaluated. Differential expression was determined with

t-test using log2-transformed expression values. False Discovery Rates estimated using method of

Storey and Tibshirani (2003).

Methylation analysis
DNA Methylation for TCGA samples was downloaded from the UCSC Xena Browser (http://xena.

ucsc.edu/). We used level three data that had been acquired using the Illumina HumanMethyla-

tion450K platform and had been pre-processed by TCGA using their standard protocols. Data was

available for 219 solid tumors and 199 adjacent non-cancer samples. We discarded all the probes

that interrogated locations in chromosomes X and Y, as well as all probes that were masked as NA

(‘Not Available’) for more than 90% of the samples. For principal components analysis, we used the
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beta values for the set of 59,577 probes that interrogated locations within CpG islands (excluding

shores and shelves), as defined in the Illumina documentation for the array. These data were stan-

dardized and subsequently principal components analysis was applied.

Immunohistochemistry
Immunohistochemical stains using the antibodies TOM20 (rabbit polyclonal, Santa Cruz Biotech.,

Dallas, TX; dilution 1:100), MTCO1 (mouse monoclonal, Abcam, Cambridge, MA; dilution 1:2000),

and Anti-8 Hydroxyguanosine (mouse monoclonal, Abcam, Cambridge, MA; dilution 1:400) were

performed on formalin-fixed, paraffin-embedded tissues using the manufactures’ protocols.

The stained sections were scanned using the Aperio ScanScope XT systems (Aperio Technologies,

Vista, CA) at 20X magnification. Immunohistochemical expression was quantified in all digital slides

with either nuclear (Anti-8 Hydroxyguanosine) or cytoplasmic (TOM20 and MTCO1) algorithms using

ImageScope analysis software (version 12; Aperio Technologies, Inc) and an H–score was calculated

(Luna, 1968).

Histochemistry
PAS/PAS diastase (PASD) and Oil Red O staining was performed using the standard methods

(Luna, 1968; Masson, 1929). While frozen tissue samples were used for Oil Red O, fixed paraffin-

embedded tissue was utilized for PAS and PASD.
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Pessayre D, Fromenty B. 1999. An alcoholic binge causes massive degradation of hepatic mitochondrial DNA in
mice. Gastroenterology 117:181–190. DOI: https://doi.org/10.1016/S0016-5085(99)70566-4, PMID: 10381926

Masson P. 1929. Some histological methods: trichrome stainings and their preliminary technique. Journal of
Technical Methods 12:75–90.

Menzies A, Teague JW, Butler AP, Davies H, Tarpey P, Nik-Zainal S, Campbell PJ. 2015. VAGrENT: variation
annotation generator. Current Protocols in Bioinformatics 52:1–11. DOI: https://doi.org/10.1002/0471250953.
bi1508s52, PMID: 26678383

Nik-Zainal S, Van Loo P, Wedge DC, Alexandrov LB, Greenman CD, Lau KW, Raine K, Jones D, Marshall J,
Ramakrishna M, Shlien A, Cooke SL, Hinton J, Menzies A, Stebbings LA, Leroy C, Jia M, Rance R, Mudie LJ,
Gamble SJ, et al. 2012. The life history of 21 breast cancers. Cell 149:994–1007. DOI: https://doi.org/10.1016/j.
cell.2012.04.023, PMID: 22608083

Nik-Zainal S, Davies H, Staaf J, Ramakrishna M, Glodzik D, Zou X, Martincorena I, Alexandrov LB, Martin S,
Wedge DC, Van Loo P, Ju YS, Smid M, Brinkman AB, Morganella S, Aure MR, Lingjærde OC, Langerød A,
Ringnér M, Ahn SM, et al. 2016. Landscape of somatic mutations in 560 breast cancer whole-genome
sequences. Nature 534:47–54. DOI: https://doi.org/10.1038/nature17676, PMID: 27135926

Pan Y, Mansfield KD, Bertozzi CC, Rudenko V, Chan DA, Giaccia AJ, Simon MC. 2007. Multiple factors affecting
cellular redox status and energy metabolism modulate hypoxia-inducible factor prolyl hydroxylase activity in
vivo and in vitro. Molecular and Cellular Biology 27:912–925. DOI: https://doi.org/10.1128/MCB.01223-06,
PMID: 17101781

Peng X, Chen Z, Farshidfar F, Xu X, Lorenzi PL, Wang Y, Cheng F, Tan L, Mojumdar K, Du D, Ge Z, Li J, Thomas
GV, Birsoy K, Liu L, Zhang H, Zhao Z, Marchand C, Weinstein JN, Bathe OF, et al. 2018. Molecular
characterization and clinical relevance of metabolic expression subtypes in human cancers. Cell Reports 23:
255–269. DOI: https://doi.org/10.1016/j.celrep.2018.03.077, PMID: 29617665

Priolo C, Khabibullin D, Reznik E, Filippakis H, Ogórek B, Kavanagh TR, Nijmeh J, Herbert ZT, Asara JM,
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