511 research outputs found

    Variación morfológica y distribución geográfica de Schizopetalon arcuatum Al-Shehbaz (Brassicaceae), una especie endémica y críptica de la Región de Atacama, Chile

    Get PDF
    La presente nota ofrece una revisión de la distribución geográfica y variación morfológica de Schizopetalon arcuatum, dado que ambas variables han generado confusión en la identificación de esta especie críptica. Se espera que la información presentada ayude a resolver este problema en relación a sus especies vecinas o cercanamente relacionadas

    Severe Neuro-COVID is associated with peripheral immune signatures, autoimmunity and signs of neurodegeneration: a prospective cross-sectional study

    Full text link
    Importance Growing evidence suggests that coronavirus disease 2019 (COVID-19) is associated with neurological sequelae. However, the underlying pathophysiological mechanisms resulting in central nervous system (CNS) derogation remain unclear. Objective To identify severity-dependent immune mechanisms in the cerebrospinal fluid (CSF) and plasma of COVID-19 patients and their association with brain imaging alterations. Design Prospective cross-sectional cohort study. Setting This study was performed from August 2020 to April 2021. Participants were enrolled in the outpatient clinics, hospital wards and intensive care units (ICU) of two clinical sites in Basel and Zurich, Switzerland. Participants Age >18 years and a positive SARS-CoV-2 test result were inclusion criteria. Potentially matching individuals were identified (n=310), of which 269 declined to participate and 1 did not match inclusion criteria. Paired CSF and plasma samples, as well as brain images, were acquired. The COVID-19 cohort (n=40; mean [SD] age, 54 [20] years; 17 women (42%)) was prospectively assorted by neurological symptom severity (classes I, II and III). Age/sex-matched inflammatory (n=25) and healthy (n=25) CSF and plasma control samples were obtained. For volumetric brain analysis, a healthy age/sex-matched control cohort (n=36) was established

    Analysis of machine learning techniques applied to sensory detection of vehicles in intelligent crosswalks

    Get PDF
    Improving road safety through artificial intelligence-based systems is now crucial turning smart cities into a reality. Under this highly relevant and extensive heading, an approach is proposed to improve vehicle detection in smart crosswalks using machine learning models. Contrarily to classic fuzzy classifiers, machine learning models do not require the readjustment of labels that depend on the location of the system and the road conditions. Several machine learning models were trained and tested using real traffic data taken from urban scenarios in both Portugal and Spain. These include random forest, time-series forecasting, multi-layer perceptron, support vector machine, and logistic regression models. A deep reinforcement learning agent, based on a state-of-the-art double-deep recurrent Q-network, is also designed and compared with the machine learning models just mentioned. Results show that the machine learning models can efficiently replace the classic fuzzy classifier.Ministry of Economy and Knowledge of the Andalusian Government, Spain 5947info:eu-repo/semantics/publishedVersio

    Minimizing the expected time to detect a randomly located lost target using 3-dimensional search technique

    Get PDF
    This paper considers a new model in search theory to find a randomly located target in the 3-dimensional space. An approximation algorithm that facilitates searching procedures for searchers or robots is presented. The expected time to detect the target is also proved. The statistical analysis by calculating the optimal search strategy which minimizes the time to detect the target, assuming trivariate standard normal distribution is provided, and the technique by flowcharts is designed as well. The effectiveness of this strategy is illustrated by introducing an application from real world

    Screening for drought tolerance in cultivars of the ornamental genus Tagetes (Asteraceae)

    Full text link
    [EN] Drought tolerance was evaluated in twelve cultivars of three ornamental Tagetes species (T. patula, T. tenuifolia and T. erecta). A stress treatment was performed by completely stopping watering of plants maintained in controlled greenhouse conditions. After three weeks, several plant growth parameters (stem length (SL), fresh weight (FW) and water content (WC)), photosynthetic pigments (chlorophylls and carotenoids (Car)), osmolytes (proline (Pro), glycine betaine (GB) and total soluble sugars (TSS)), an oxidative stress maker (malondialdehyde (MDA)) and antioxidants (total phenolic compounds (TPC) and total flavonoids (TF)) were measured. Considerable differences in the evaluated traits were found among the control and drought-stressed plants. Drought stress generally caused a marked reduction in plant growth and carotenoid pigments, and an increase in soluble solutes and oxidative stress. For most cultivars, proline levels in stressed plants increased between 30 and 70-fold compared to the corresponding controls. According to the different measured parameters, on average T. erecta proved to be more tolerant to drought than T. patula and T. tenuifolia. However, a considerable variation in the tolerance to drought was found within each species. The traits with greater association to drought tolerance as well as the most tolerant cultivars could be clearly identified in a principal components analysis (PCA). Overall, our results indicate that drought tolerant cultivars of Tagetes can be identified at early stages using a combination of plant growth and biochemical markersCicevan, R.; Al Hassan, M.; Sestras, AF.; Prohens Tomás, J.; Vicente, O.; Sestras, R.; Boscaiu, M. (2016). Screening for drought tolerance in cultivars of the ornamental genus Tagetes (Asteraceae). PeerJ. 4. doi:10.7717/peerj.2133S

    Salinity-Induced Variation in Biochemical Markers Provides Insight into the Mechanisms of Salt Tolerance in Common (Phaseolus vulgaris) and Runner (P. coccineus) Beans

    Full text link
    [EN] The evaluation of biochemical markers is important for the understanding of the mechanisms of tolerance to salinity of Phaseolus beans. We have evaluated several growth parameters in young plants of three Phaseolus vulgaris cultivars subjected to four salinity levels (0, 50, 100, and 150 mM NaCl); one cultivar of P. coccineus, a closely related species reported as more salt tolerant than common bean, was included as external reference. Biochemical parameters evaluated in leaves of young plants included the concentrations of ions (Na+, K+, and Cl􀀀), osmolytes (proline, glycine betaine, and total soluble sugars), and individual soluble carbohydrates. Considerable differences were found among cultivars, salinity levels, and in their interaction for most traits. In general, the linear component of the salinity factor for the growth parameters and biochemical markers was the most important. Large differences in the salinity response were found, with P. vulgaris cultivars The Prince and Maxidor being, respectively, the most susceptible and tolerant ones. Our results support that salt stress tolerance in beans is mostly based on restriction of Na+ (and, to a lesser extent, also of Cl􀀀) transport to shoots, and on the accumulation of myo-inositol for osmotic adjustment. These responses to stress during vegetative growth appear to be more efficient in the tolerant P. vulgaris cultivar Maxidor . Proline accumulation is a reliable marker of the level of salt stress affecting Phaseolus plants, but does not seem to be directly related to stress tolerance mechanisms. These results provide useful information on the responses to salinity of PhaseolusThis work was partly funded by a grant from the Spanish Ministry of Science and Innovation (Project CGL2008-00438/BOS), with contribution from the European Regional Development Fund. Mohamad Al Hassan was a recipient of an Erasmus Mundus pre-doctoral scholarship financed by the European Commission (Welcome Consortium).Al Hassan, M.; Morosan, M.; López Gresa, MP.; Prohens Tomás, J.; Vicente Meana, Ó.; Boscaiu Neagu, MT. (2016). Salinity-Induced Variation in Biochemical Markers Provides Insight into the Mechanisms of Salt Tolerance in Common (Phaseolus vulgaris) and Runner (P. coccineus) Beans. International Journal of Molecular Sciences. 17. doi:10.3390/ijms17091582S15821

    In Vivo Theranostics at the Peri-Infarct Region in Cerebral Ischemia

    Get PDF
    The use of theranostics in neurosciences has been rare to date because of the limitations imposed on the free delivery of substances to the brain by the blood-brain barrier. Here we report the development of a theranostic system for the treatment of stroke, a leading cause of death and disability in developed countries. We first performed a series of proteomic, immunoblotting and immunohistological studies to characterize the expression of molecular biomarkers for the so-called peri-infarct tissue, a key region of the brain for stroke treatment. We confirmed that the HSP72 protein is a suitable biomarker for the peri-infarct region, as it is selectively expressed by at-risk tissue for up to 7 days following cerebral ischemia. We also describe the development of anti-HSP72 vectorized stealth immunoliposomes containing imaging probes to make them traceable by conventional imaging techniques (fluorescence and MRI) that were used to encapsulate a therapeutic agent (citicoline) for the treatment of cerebral ischemia. We tested the molecular recognition capabilities of these nano-platforms in vitro together with their diagnostic and therapeutic properties in vivo, in an animal model of cerebral ischemia. Using MRI, we found that 80% of vectorized liposomes were located on the periphery of the ischemic lesion, and animals treated with citicoline encapsulated on these liposomes presented lesion volumes up to 30% smaller than animals treated with free (non-encapsulated) drugs. Our results show the potential of nanotechnology for the development of effective tools for the treatment of neurological diseases

    Responses to Drought in Seedlings of European Larch (Larix decidua Mill.) from Several Carpathian Provenances

    Full text link
    [EN] European larch (Larix decidua Mill.) has been reported either as more tolerant or as more sensitive to drought than conifers with perennial leaves. Previous studies have revealed that Carpathian populations of European larch display a high genetic variability. A comparative study of the responses of these populations to drought stress at the seedling stage might allow the identification of drought tolerant genotypes and reliable drought stress biomarkers, which could be eventually used for the early detection of drought effects in larch, not only under control greenhouse conditions, but also in their natural stands. Growth responses were analyzed in larch seedlings from six Romanian Carpathian populations, submitted to one month of mild drought stress under controlled conditions. Levels of photosynthetic pigments (chlorophylls a and b, and carotenoids), osmolytes (proline and total soluble sugars), monovalent cations (Na+ and K+), and malondialdehyde (MDA) and non-enzymatic antioxidants (total phenolics and flavonoids) were compared with control treatments and between populations. Growth and the pattern of the biochemical responses were very similar in the six populations. Drought stress lead to stem length decrease in all population, whereas reduction of fresh weight of needles was significant only in one population (BVVC), and reduction of water content of needles in two populations (BVVC and GuHo). The optimal biochemical traits for an early detection of drought symptoms in this species is the increase-in most populations-of total soluble sugars, MDA, and total phenolic compounds, whereas K+ reduction was significant in all populations. Photosynthetic pigments remained unchanged, except for the Anin population where they were reduced under stress. Multivariate principal component and hierarchical clustering analyses confirmed the impact of drought in the growth and physiology of European larch, and revealed that the humidity of the substrate was positively correlated with the growth parameters and the levels of K+ in needles, and negatively correlated with the levels of MDA, total soluble sugars, total phenolic compounds, and flavonoids in needles.Plesa, IM.; Al Hassan, M.; González-Orenga, S.; Sestras, A.; Vicente, O.; Prohens Tomás, J.; Boscaiu, M.... (2019). Responses to Drought in Seedlings of European Larch (Larix decidua Mill.) from Several Carpathian Provenances. Forests. 10(6):1-22. https://doi.org/10.3390/f10060511S122106Allen, C. D., Macalady, A. K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., … Cobb, N. (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259(4), 660-684. doi:10.1016/j.foreco.2009.09.001DALE, V. H., JOYCE, L. A., MCNULTY, S., NEILSON, R. P., AYRES, M. P., FLANNIGAN, M. D., … MICHAEL WOTTON, B. (2001). Climate Change and Forest Disturbances. BioScience, 51(9), 723. doi:10.1641/0006-3568(2001)051[0723:ccafd]2.0.co;2Gilliam, F. S. (2016). Forest ecosystems of temperate climatic regions: from ancient use to climate change. New Phytologist, 212(4), 871-887. doi:10.1111/nph.14255Eilmann, B., de Vries, S. M. G., den Ouden, J., Mohren, G. M. J., Sauren, P., & Sass-Klaassen, U. (2013). Origin matters! Difference in drought tolerance and productivity of coastal Douglas-fir (Pseudotsuga menziesii (Mirb.)) provenances. Forest Ecology and Management, 302, 133-143. doi:10.1016/j.foreco.2013.03.031Gao, R., Shi, X., & Wang, J. R. (2017). Comparative studies of the response of larch and birch seedlings from two origins to water deficit. New Zealand Journal of Forestry Science, 47(1). doi:10.1186/s40490-017-0095-1Lindner, M., Maroschek, M., Netherer, S., Kremer, A., Barbati, A., Garcia-Gonzalo, J., … Marchetti, M. (2010). Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Forest Ecology and Management, 259(4), 698-709. doi:10.1016/j.foreco.2009.09.023Hanewinkel, M., Cullmann, D. A., Schelhaas, M.-J., Nabuurs, G.-J., & Zimmermann, N. E. (2012). Climate change may cause severe loss in the economic value of European forest land. Nature Climate Change, 3(3), 203-207. doi:10.1038/nclimate1687SALA, A., & HOCH, G. (2009). Height-related growth declines in ponderosa pine are not due to carbon limitation. Plant, Cell & Environment, 32(1), 22-30. doi:10.1111/j.1365-3040.2008.01896.xMilad, M., Schaich, H., Bürgi, M., & Konold, W. (2011). Climate change and nature conservation in Central European forests: A review of consequences, concepts and challenges. Forest Ecology and Management, 261(4), 829-843. doi:10.1016/j.foreco.2010.10.038Bolte, A., Ammer, C., Löf, M., Madsen, P., Nabuurs, G.-J., Schall, P., … Rock, J. (2009). Adaptive forest management in central Europe: Climate change impacts, strategies and integrative concept. Scandinavian Journal of Forest Research, 24(6), 473-482. doi:10.1080/02827580903418224Xiang, W., Lei, X., & Zhang, X. (2016). Modelling tree recruitment in relation to climate and competition in semi-natural Larix-Picea-Abies forests in northeast China. Forest Ecology and Management, 382, 100-109. doi:10.1016/j.foreco.2016.09.050Sánchez-Gómez, D., Robson, T. M., Gascó, A., Gil-Pelegrín, E., & Aranda, I. (2013). Differences in the leaf functional traits of six beech (Fagus sylvatica L.) populations are reflected in their response to water limitation. Environmental and Experimental Botany, 87, 110-119. doi:10.1016/j.envexpbot.2012.09.011Bussotti, F., Pollastrini, M., Holland, V., & Brüggemann, W. (2015). Functional traits and adaptive capacity of European forests to climate change. Environmental and Experimental Botany, 111, 91-113. doi:10.1016/j.envexpbot.2014.11.006GRAMAZIO, P., PLESA, I. M., TRUTA, A. M., SESTRAS, A. F., VILANOVA, S., PLAZAS, M., … SESTRAS, R. E. (2018). Highly informative SSR genotyping reveals large genetic diversity and limited differentiation in European larch (Larixdecidua) populations from Romania. TURKISH JOURNAL OF AGRICULTURE AND FORESTRY, 42(3), 165-175. doi:10.3906/tar-1801-41Al Hassan, M., Chaura, J., López-Gresa, M. P., Borsai, O., Daniso, E., Donat-Torres, M. P., … Boscaiu, M. (2016). Native-Invasive Plants vs. Halophytes in Mediterranean Salt Marshes: Stress Tolerance Mechanisms in Two Related Species. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.00473Murray, F. W. (1967). On the Computation of Saturation Vapor Pressure. Journal of Applied Meteorology, 6(1), 203-204. doi:10.1175/1520-0450(1967)0062.0.co;2LICHTENTHALER, H. K., & WELLBURN, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11(5), 591-592. doi:10.1042/bst0110591Weimberg, R. (1987). Solute adjustments in leaves of two species of wheat at two different stages of growth in response to salinity. Physiologia Plantarum, 70(3), 381-388. doi:10.1111/j.1399-3054.1987.tb02832.xBates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207. doi:10.1007/bf00018060DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric Method for Determination of Sugars and Related Substances. Analytical Chemistry, 28(3), 350-356. doi:10.1021/ac60111a017Hodges, D. M., DeLong, J. M., Forney, C. F., & Prange, R. K. (1999). Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 207(4), 604-611. doi:10.1007/s004250050524Blainski, A., Lopes, G., & de Mello, J. (2013). Application and Analysis of the Folin Ciocalteu Method for the Determination of the Total Phenolic Content from Limonium Brasiliense L. Molecules, 18(6), 6852-6865. doi:10.3390/molecules18066852Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4), 555-559. doi:10.1016/s0308-8146(98)00102-2Metsalu, T., & Vilo, J. (2015). ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Research, 43(W1), W566-W570. doi:10.1093/nar/gkv468Samaniego, L., Thober, S., Kumar, R., Wanders, N., Rakovec, O., Pan, M., … Marx, A. (2018). Anthropogenic warming exacerbates European soil moisture droughts. Nature Climate Change, 8(5), 421-426. doi:10.1038/s41558-018-0138-5Lindner, M., Fitzgerald, J. B., Zimmermann, N. E., Reyer, C., Delzon, S., van der Maaten, E., … Hanewinkel, M. (2014). Climate change and European forests: What do we know, what are the uncertainties, and what are the implications for forest management? Journal of Environmental Management, 146, 69-83. doi:10.1016/j.jenvman.2014.07.030Hlásny, T., Mátyás, C., Seidl, R., Kulla, L., Merganičová, K., Trombik, J., … Konôpka, B. (2014). Climate change increases the drought risk in Central European forests: What are the options for adaptation? Forestry Journal, 60(1), 5-18. doi:10.2478/forj-2014-0001Badalotti, A., Anfodillo, T., & Grace, J. (2000). Evidence of osmoregulation in Larix decidua at Alpine treeline and comparative responses to water availability of two co-occurring evergreen species. Annals of Forest Science, 57(7), 623-633. doi:10.1051/forest:2000146Eilmann, B., & Rigling, A. (2012). Tree-growth analyses to estimate tree species’ drought tolerance. Tree Physiology, 32(2), 178-187. doi:10.1093/treephys/tps004Schuster, R., & Oberhuber, W. (2012). Drought sensitivity of three co-occurring conifers within a dry inner Alpine environment. Trees, 27(1), 61-69. doi:10.1007/s00468-012-0768-6PLESA, I., AL HASSAN, M., SESTRAS, A. F., VICENTE, O., BOSCAIU, M., & SESTRAS, R. E. (2018). Biochemical Markers of Salt Stress in European Larch (Larix decidua). Notulae Scientia Biologicae, 10(3), 430-438. doi:10.15835/nsb10310322Schiop, S. T., Al Hassan, M., Sestras, A. F., Boscaiu, M., Sestras, R. E., & Vicente, O. (2017). Biochemical responses to drought, at the seedling stage, of several Romanian Carpathian populations of Norway spruce (Picea abies L. Karst). Trees, 31(5), 1479-1490. doi:10.1007/s00468-017-1563-1Munns, R., & Termaat, A. (1986). Whole-Plant Responses to Salinity. Functional Plant Biology, 13(1), 143. doi:10.1071/pp9860143Zhu, J.-K. (2001). Plant salt tolerance. Trends in Plant Science, 6(2), 66-71. doi:10.1016/s1360-1385(00)01838-0Arteaga, S., Al Hassan, M., Chaminda Bandara, W., Yabor, L., Llinares, J., Boscaiu, M., & Vicente, O. (2018). Screening for Salt Tolerance in Four Local Varieties of Phaseolus lunatus from Spain. Agriculture, 8(12), 201. doi:10.3390/agriculture8120201Cicevan, R., Al Hassan, M., Sestras, A. F., Prohens, J., Vicente, O., Sestras, R. E., & Boscaiu, M. (2016). Screening for drought tolerance in cultivars of the ornamental genusTagetes(Asteraceae). PeerJ, 4, e2133. doi:10.7717/peerj.2133Plesa, I., González-Orenga, S., Al Hassan, M., Sestras, A., Vicente, O., Prohens, J., … Boscaiu, M. (2018). Effects of Drought and Salinity on European Larch (Larix decidua Mill.) Seedlings. Forests, 9(6), 320. doi:10.3390/f9060320Toldi, O., Tuba, Z., & Scott, P. (2009). Vegetative desiccation tolerance: Is it a goldmine for bioengineering crops? Plant Science, 176(2), 187-199. doi:10.1016/j.plantsci.2008.10.002Corcuera, L., Gil-Pelegrin, E., & Notivol, E. (2011). Aridity promotes differences in proline and phytohormone levels in Pinus pinaster populations from contrasting environments. Trees, 26(3), 799-808. doi:10.1007/s00468-011-0651-xSchiop, S. T., Al Hassan, M., Sestras, A. F., Boscaiu, M., Sestras, R. E., & Vicente, O. (2015). Identification of Salt Stress Biomarkers in Romanian Carpathian Populations of Picea abies (L.) Karst. PLOS ONE, 10(8), e0135419. doi:10.1371/journal.pone.0135419Junker, L. V., & Ensminger, I. (2016). Relationship between leaf optical properties, chlorophyll fluorescence and pigment changes in senescingAcer saccharumleaves. Tree Physiology, 36(6), 694-711. doi:10.1093/treephys/tpv148FLEXAS, J. (2002). Drought-inhibition of Photosynthesis in C3 Plants: Stomatal and Non-stomatal Limitations Revisited. Annals of Botany, 89(2), 183-189. doi:10.1093/aob/mcf027Munné-Bosch, S., & Alegre, L. (2004). Die and let live: leaf senescence contributes to plant survival under drought stress. Functional Plant Biology, 31(3), 203. doi:10.1071/fp03236Alonso, R., Elvira, S., Castillo, F. J., & Gimeno, B. S. (2001). Interactive effects of ozone and drought stress on pigments and activities of antioxidative enzymes in Pinus halepensis. Plant, Cell & Environment, 24(9), 905-916. doi:10.1046/j.0016-8025.2001.00738.xCroser, C., Renault, S., Franklin, J., & Zwiazek, J. (2001). The effect of salinity on the emergence and seedling growth of Picea mariana, Picea glauca, and Pinus banksiana. Environmental Pollution, 115(1), 9-16. doi:10.1016/s0269-7491(01)00097-5Taïbi, K., del Campo, A. D., Vilagrosa, A., Bellés, J. M., López-Gresa, M. P., Pla, D., … Mulet, J. M. (2017). Drought Tolerance in Pinus halepensis Seed Sources As Identified by Distinctive Physiological and Molecular Markers. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.01202Verbruggen, N., & Hermans, C. (2008). Proline accumulation in plants: a review. Amino Acids, 35(4), 753-759. doi:10.1007/s00726-008-0061-6Ashraf, M., & Foolad, M. R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59(2), 206-216. doi:10.1016/j.envexpbot.2005.12.006Szabados, L., & Savouré, A. (2010). Proline: a multifunctional amino acid. Trends in Plant Science, 15(2), 89-97. doi:10.1016/j.tplants.2009.11.009Ditmarova, L., Kurjak, D., Palmroth, S., Kmet, J., & Strelcova, K. (2009). Physiological responses of Norway spruce (Picea abies) seedlings to drought stress. Tree Physiology, 30(2), 205-213. doi:10.1093/treephys/tpp116Guo, J., Yang, Y., Wang, G., Yang, L., & Sun, X. (2010). Ecophysiological responses ofAbies fabriseedlings to drought stress and nitrogen supply. Physiologia Plantarum. doi:10.1111/j.1399-3054.2010.01370.xGleeson, D., Lelu-Walter, M.-A., & Parkinson, M. (2004). Influence of exogenous L-proline on embryogenic cultures of larch (Larix leptoeuropaeaDengler), sitka spruce (Picea sitchensis(Bong.) Carr.) and oak (Quercus roburL.) subjected to cold and salt stress. Annals of Forest Science, 61(2), 125-128. doi:10.1051/forest:2004003Hartmann, H., & Trumbore, S. (2016). Understanding the roles of nonstructural carbohydrates in forest trees – from what we can measure to what we want to know. New Phytologist, 211(2), 386-403. doi:10.1111/nph.13955Clancy, K. M., Wagner, M. R., & Reich, P. B. (1995). Ecophysiology and Insect Herbivory. Ecophysiology of Coniferous Forests, 125-180. doi:10.1016/b978-0-08-092593-6.50011-6Del Rio, D., Stewart, A. J., & Pellegrini, N. (2005). A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutrition, Metabolism and Cardiovascular Diseases, 15(4), 316-328. doi:10.1016/j.numecd.2005.05.003Fini, A., Brunetti, C., Di Ferdinando, M., Ferrini, F., & Tattini, M. (2011). Stress-induced flavonoid biosynthesis and the antioxidant machinery of plants. Plant Signaling & Behavior, 6(5), 709-711. doi:10.4161/psb.6.5.15069Granda, V., Delatorre, C., Cuesta, C., Centeno, M. L., Fernandez, B., Rodriguez, A., & Feito, I. (2014). Physiological and biochemical responses to severe drought stress of nine Eucalyptus globulus clones: a multivariate approach. Tree Physiology, 34(7), 778-786. doi:10.1093/treephys/tpu05

    Effects of Drought and Salinity on European Larch (Larix decidua Mill.) Seedlings

    Full text link
    [EN] Larix decidua, the European larch, is not normally affected by drought or salinity in its natural habitats, but it may be when grown as an ornamental tree, by the widespread practice of winter de-icing of mountain roads with NaCl, and because of global warming-induced environmental changes. The responses of two-month-old larch seedlings to 30 days water deficit (withholding irrigation) or salt stress (150 mM NaCl) treatments were studied by determining stress-induced changes in several growth parameters and biochemical markers (ion and osmolyte contents, level of oxidative stress, activation of enzymatic and non-enzymatic antioxidant systems). Both treatments caused the inhibition of growth, degradation of photosynthetic pigments, a small increase in malondialdehyde (MDA, an oxidative stress biomarker), and the activation of antioxidant enzymes: superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR). In all cases, salinity appeared to have stronger effects on the seedlings than water deficit. The presence of relatively high concentrations of glycine betaine, both in control and stressed plants, may represent a constitutive mechanism of defence against stress in European larch. Additionally, other responses were specific for salt stress and included the activation of K+ transport from roots to shoots and the accumulation of Pro as an osmoprotectantI.M.P. and M.A.H. were recipients of Erasmus Mundus pre-doctoral scholarships financed by the European Commission.Plesa, IM.; González-Orenga, S.; Al Hassan, M.; Sestras, AF.; Vicente, O.; Prohens Tomás, J.; Sestras, RE.... (2018). Effects of Drought and Salinity on European Larch (Larix decidua Mill.) Seedlings. Forests. 9(6). doi:10.3390/f9060320S9
    corecore