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Abstract
This paper considers a new model in search theory to find a randomly

located target in the 3-dimensional space. An approximation algorithm that
facilitates searching procedures for searchers or robots is presented. The
expected time to detect the target is also proved. The statistical analysis by
calculating the optimal search strategy which minimizes the time to detect
the target, assuming trivariate standard normal distribution is provided, and
the technique by flowcharts is designed as well. The effectiveness of this
strategy is illustrated by introducing an application from real world.
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1 Introduction
The study of search plans for located or moving targets has become an impor-
tant tool in modern applications. To cite some interesting examples, we can start
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with a linear search strategy (see El-Rayes, Mohamed, and Fergani (1993), Mo-
hamed, and Abou Gabal (2000, 2003, 2004)) and some important applications
of this search model. For instance, searching for a defective unit in a large linear
electric system, or searching for survivors in a desert, or a coordinated search tech-
nique studied in case of linear search (see Reyniers (1995,1996), Mohamed et al.
(2007)). In the works Mohamed, Abou Gabal, and El-Hadidy (2009), Mohamed,
Abou Gabal, and Afifi (2007), Mohamed, Abou Gabal, and El-Hadidy (2012), the
authors discussed the coordinated search technique in the plane, when the located
target has symmetric and asymmetric distribution. In case of moving targets, the
cooperation between two searchers at the origin to find a random moving target
on the real line has been analyzed in by El-Hadidy, and Abou Gabal (2018). Re-
cently, El-Hadidy, and El-Bagoury (2017) proposed and studied a modern search
model in the three dimensional space, in order to determine a located target in a
3-D known zone by a single searcher. More recently, El-Hadidy, and El-Bagoury
(2017) introduced a coordinated search technique to find a 3-D randomly located
target by two searchers. For more different kinds of applications and search plans,
see Mohamed, Kassem, and El-Hadidy (2011, 2017), Mohamed, and El-Hadidy
(2013), Mohamed, Abou Gabal, and El-Hadidy (2017), El-Hadidy (2016).

2 Problem Formulation
Aircraft crashes have recently become one of the most difficult problems faced by
scientists and research teams. In most cases, the cause of the accident remains un-
known until the black box can be obtained and analyzed, and the problem becomes
more complicated if the black box is hanged between two rocks in the bottom of
seas and oceans. It is well known that the depths of seas and oceans have a spe-
cial nature and shape (for instance, coral reefs and manifold rocks) which makes
modern search devices unable to locate the target. Based on the more and more
information introduced from air navigation devices, the difficulties of searching
for the lost black box to determine the cause of air crash can be reduced a little.
Also the target may be located in one of four zones, where it happens that the
probability of detecting the target in the first zone is greater than the probabil-
ity of detecting it in the second zone, and this is greater than the probability of
detecting it the third one, and the latter is bigger than in the fourth zone. There-
fore, we divide the search zone into four sub-zones zk, k = 1, 2, 3 and 4 where
z1 < z2 < z3 < z4, and we denote the probability of detecting the target in zone
zk by p(zk); p(z1) > p(z2) > p(z3) > p(z4) These theoretical assumptions refer
to the experts and statisticians as a result of the information provided from the
air navigation devices, for example the beginning of a plane deviation etc. The
primary purpose of the search mission is to facilitate the searching way by using
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a new search technique, we should also take account of the fact that modern tech-
nologies are facing high difficulties to locate the target, so we should decrease the
first zone returns (distance units), where me may have high probability of detect-
ing the target. Then, we have to decrease the range of the sensor (radar) in the first
zone, to fads away the special nature of seas and oceans. In the second zone, the
range of the sensor will be larger than in the first one and smaller than in the third
zone, where the probability of detecting the target in the second zone smaller than
in the first zone and bigger than the probability of detecting in the third zone, by
similarity in the third and fourth zones the situation is similar, as we mentioned the
cause of decreasing the range of radar to fade away the high difficulty of oceans
nature.

3 The searching framework

3.1 The space of search:
We divided the 3-dimensional zone (Ξ) into four sub-zones (zk, k = 1, 2, 3 and 4)
as indicated in Fig. (1).

3.2 The target:
Randomly located in (Ξ) , its position is given by the values of three independent
random variables (X, Y, Z) which have distribution F

3.3 The means of search:
By considering that the target will be carried out by the searchers s1, s2, s3 and s4.
Every searcher starts looking for the target from (0,0,0), using a continuous path
with the velocity equals to the time.

4 The searching technique

4.1 The first searcher:
The first searcher will conduct his search as following:

I. Starts searching from the point (0, 0, 0).

II. Searching in the first cubic C1 and its tracks as follow:

i. Moving forward r1 units towards the point (r1, 0, 0).
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ii. Turning 90o clockwise and move forward r1 units.

iii. Turning 90o clockwise, move r1 units forwards, and travel along the
same direction, completing the search to another r1 units.

iv. Repeating the turning 90o clockwise, moving r1 units forwards and
extend it to another r1.

v. Turning 90o clockwise, moving r1 units forwards, extend it to another
r1 units.

vi. Turning 90o clockwise, moving r1 units forwards towards the point
(r1, 0, 0).

III. A second search in the second cube C2 and its tracks may carry out if the
black box is not detected, the searcher could move to the point (r2, 0, 0)
with r2 − r1 units, and repeat the searching with r2 units, if the target still
is not detected, the searcher will retrace the steps as far as r3 − r2 to check
the third cube C3 and its tracks, and therefore the fourth until the target be
detected as illustrated in Figure 1.

The searcher uses a sensor in his searching; the sensor range is smaller than or
equal to ri − ri−1, i = 1, 2, · · · .

4.2 The second searcher:
The second searcher will search in the second zone as following:

I. Starts searching from the point (0,0,0).

II. Searching in the first cubic C1 and its tracks as follows:

i. Moving forwards 2r1 units towards the point.

ii. Turning 90o clockwise and move 2r1 units forwards.

iii. Turning 90o clockwise, move 2r1 units forwards, and travel along the
same direction, completing the search to another 2r1 units.

iv. Repeating the turning 90o clockwise, moving 2r1 units forwards, ex-
tend it to another 2r1 units.

v. Turning 90o clockwise, moving 2r1 units forwards, extend it to another
2r1 units.

vi. Turning 90o clockwise, moving forwards 2r1 units towards the point
(2r1,0,0).
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Figure 1: The searching technique
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III. A second search in the second cube C2 and its tracks may carry out if the
black box is not detected, the searcher could move to the point (2r2, 0, 0)
with 2r2 − 2r1 units, and repeat the searching with 2r2 units, if the target
is still not detected, the searcher will retrace the steps as far as 2r3 − 2r2
to check the third cube C3 and its tracks, and so fourth until the target is
detected as illustrated in Figure 1.

4.3 The third searcher:
The third searcher will search in the third zone as follows:

I. Starts searching from the point (0, 0, 0).

II. Searching in the first cubic C1 and its tracks as follows:

i. Moving forwards 3r1 units towards the point (3r1, 0, 0).

ii. Turning 90o clockwise and move forwards 3r1 units.

iii. Turning 90o clockwise, move forwards 3r1 units, and travel along the
same direction, completing the search to another 3r1 units.

iv. Repeating the turning 90o clockwise, moving forwards 3r1 units and
extend it to 3r1 another.

v. Turning 90o clockwise, moving forwards 3r1 units, extend it to another
3r1 units.

vi. Turning 90o clockwise, moving forwards 3r1 units towards the point
(3r1, 0, 0).

III. A second search in the second cube C2 and its tracks may carry out if the
black box is not detected, the searcher could move to the point (3r2, 0, 0)
with 3r2 − 3r1 units, and repeat the searching with 3r2 units, if the target
is still not detected, the searcher will retrace the steps as far as 3r3 − 3r2
to check the third cube C3 and its tracks, and so fourth until the target is
detected as illustrated in Figure 1.

4.4 The fourth searcher:
The fourth searcher will search in the fourth zone as follows:

I. Starts searching from the point (0, 0, 0).

II. Searching in the first cubic C1 and its tracks as follow:

i. Moving forwards 4r1 units towards the point.
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ii. Turning 900 clockwise and move forwards 4r1 units.

iii. Turning 900 clockwise, move forwards 4r1 units, and travel along the
same direction, completing the search to another 4r1 units.

iv. Repeating the turning 900 clockwise, moving forwards 4r1 units ex-
tended to another 4r1.

v. Turning 900 clockwise, moving forwards 4r1 units, extended to an-
other 4r1 units.

vi. Turning 900 clockwise, moving forwards 4r1 units towards the point
(4r1, 0, 0).

III. A second search in the second cube C2 and its tracks may carry out if the
black box is not detected, the searcher could move to the point (4r2, 0, 0)
with 4r2 − 4r1 units, and repeat the searching with 3r2 units, if the target
is still not detected, the searcher will retrace the steps as far as 4r3 − 4r2
to check the third cube C3 and its tracks, and so fourth until the target be
detected as illustrated in Figure 1.

5 Algorithms and flowcharts

5.1 Main algorithm (Figure 2)
From the initial point to the first point in the first cube for each zone.

• Main algorithm

• For (k = 1 to 4)

– Initialize the searcherk to his start point.

– Move and search for distance kr1.

– If (target not found in this distance) then

∗ search in cube by ( 1 ,k ).

– Else

∗ Success

– End if

• End for

• End main
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5.2 Search in cube algorithm (Figure 3)
• Search in cube algorithm

• Inputs i,k

• Turn 90o clockwise

• Move and search for distance kri

• Turn 90o clockwise

• Move and search for distance 2kri

• Turn 90o clockwise

• Move and search for distance 2kri

• Turn 90o clockwise

• Move and search for distance 2kri

• Turn 90o clockwise

• Move and search for distance kri

• Turn 90o clockwise

• If (target not found) then

– If (i 6 n)

∗ Execute Moving and searching (i+1,k)

– Else

∗ Search fail for this searcher

• Else

– Success

• End if

• End of search in cube
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5.3 Moving and Searching algorithm (Figure 4)
• Moving and Searching algorithm

– inputs i, k

• Move and search from the start point for distance k(ri − ri−1)

• If (target not found in this distance) then

– Execute search in cube by ( i ,k )

• Else

– Success

• End if

• End of Moving and searching

6 The expected time
Theorem 6.1. If the target has symmetric trivariate known distribution, then the
expected time of detecting the target in the first zone for the first searcher is given
by:

n∑
i=1

[
(9ri − ri−1)

(∫∫∫
Ci

f(x, y, z)dxdydz −
∫∫∫
Ci−1

f(x, y, z)dxdydz
)]

(1)

Proof. The search path is
∏

= {
∏

i : i = 1, 2, · · · , n}, the target has symmetric
trivariate known distribution. Referring to our hypothesis we can see that, if the
first searcher travels in the first cubic C1 and its track to locate the target, then
D(
∏

1) = r1 + 8r1 = 9r1, may the target lies in the space between C1 and C2,
then D(

∏
2) = (r2− r1) + 8r2 = 9r2− r1. Similarly, if the target lies in the space

between C2 and C3 then D(
∏

3) = (r3− r2) + 8r3 = 9r3− r2 etc. Consequently,
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Figure 2: Flowcharts for main algorithm

10



Figure 3: Flowcharts for Search in cube
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Figure 4: Flowcharts for moving and searching
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we have

D(
∏

, F ) = 9r1

∫∫∫
C1

f(x, y, z)dxdydz

+ (9r2 − r1)
[ ∫∫∫

C2

f(x, y, z)dxdydz −
∫∫∫
C1

f(x, y, z)dxdydz
]

+ (9r3 − r2)
[ ∫∫∫

C3

f(x, y, z)dxdydz −
∫∫∫
C2

f(x, y, z)dxdydz
]

+ · · ·+ (9rn − rn−1)
[ ∫∫∫

Cn

f(x, y, z)dxdydz −
∫∫∫
Cn−1

f(x, y, z)dxdydz
]

=
n∑
i=1

[
(9ri − ri−1)

(∫∫∫
Ci

f(x, y, z)dxdydz −
∫∫∫
Ci−1

f(x, y, z)dxdydz
)]

The following theorems 6.2, 6.3 and 6.4, which establish similar results for
the other zones, can be proved by the same arguments as Theorem 6.1.

Theorem 6.2. If the target has symmetric trivariate known distribution, then the
expected time of detecting the target in the second zone by the second searcher is
given by:

n∑
i=1

[
(18ri − 2ri−1)

(∫∫∫
Ci

f(x, y, z)dxdydz −
∫∫∫
Ci−1

f(x, y, z)dxdydz
)]

(2)

Theorem 6.3. If the target has symmetric trivariate known distribution, then the
expected time of detecting the target in the third zone by the third searcher is given
by:

n∑
i=1

[
(27ri − 3ri−1)

(∫∫∫
Ci

f(x, y, z)dxdydz −
∫∫∫
Ci−1

f(x, y, z)dxdydz
)]

(3)

Theorem 6.4. If the target has symmetric trivariate known distribution, then the
expected time of detecting the target in the fourth zone by the fourth searcher is
given by:

n∑
i=1

[
(36ri − 4ri−1)

(∫∫∫
Ci

f(x, y, z)dxdydz −
∫∫∫
Ci−1

f(x, y, z)dxdydz
)]

(4)
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7 Optimal search path

Definition 7.1. Let
∏∗ ∈ Q be a search path, then

∏∗ is said to be an optimal
search path, if D(

∏∗) = inf{
∏

:
∏
∈ Q}.

If
∏

= {
∏

i : i = 1, 2, · · · , n} is a critical search path from class Q, then
∂D(

∏
, F )

∂ri
exists for all pertinent values of i, and then

∂D(
∏
, F )

∂ri
= 0, i > 1.

Theorem 7.1. Assume that F (x, y, z) is a joint continuous distribution function
with joint density function f(x, y, z). Let

∏∗ ∈ Q be an optimal search path for
the first searcher then,

10
(∫∫∫

Ci

f(x, y, z)dxdydz + ri
∂

∂ri

∫∫∫
Ci

f(x, y, z)dxdydz
)

9ri+1
∂

∂ri

∫∫∫
Ci+1

f(x, y, z)dxdydz − 9

∫∫∫
Ci−1

f(x, y, z)dxdydz (5)

− ri−1
∂

∂ri

∫∫∫
Ci

f(x, y, z)dxdydz −
∫∫∫
Ci+1

f(x, y, z)dxdydz = 0

Proof. From (1.1) we deduce

D(
∏

, F ) = 9r1

∫∫∫
C1

f(x, y, z)dxdydz

+ (9r2 − r1)
(∫∫∫

C2

f(x, y, z)dxdydz −
∫∫∫
C1

f(x, y, z)dxdydz
)

+ (9r3 − r2)
(∫∫∫

C3

f(x, y, z)dxdydz −
∫∫∫
C2

f(x, y, z)dxdydz
)

+ · · ·

Then,

∂D(
∏
, F )

∂r1
= 10

(∫∫∫
C1

f(x, y, z)dxdydz + r1
∂

∂r1

∫∫∫
C1

f(x, y, z)dxdydz
)

+ 9r2
∂

∂r1

∫∫∫
C2

f(x, y, z)dxdydz −
∫∫∫
C2

f(x, y, z)dxdydz = 0

14



Also,

∂D(
∏
, F )

∂r2
= 10

(∫∫∫
C2

f(x, y, z)dxdydz + r2
∂

∂r2

∫∫∫
C2

f(x, y, z)dxdydz
)

+ 9r3
∂

∂r2

∫∫∫
C3

f(x, y, z)dxdydz − 9

∫∫∫
C1

f(x, y, z)dxdydz

− r1
∂

∂r2

∫∫∫
C2

f(x, y, z)dxdydz −
∫∫∫
C3

f(x, y, z)dxdydz = 0

Similarity,

∂D(
∏
, F )

∂r3
= 10

(∫∫∫
C3

f(x, y, z)dxdydz + r3
∂

∂r3

∫∫∫
C3

f(x, y, z)dxdydz
)

+ 9r4
∂

∂r3

∫∫∫
C4

f(x, y, z)dxdydz − 9

∫∫∫
C2

f(x, y, z)dxdydz

− r2
∂

∂r3

∫∫∫
C3

f(x, y, z)dxdydz −
∫∫∫
C4

f(x, y, z)dxdydz = 0

And we proceed accordingly. The proof is complete.

Theorem 7.2. For the second searcher, supposing F (x, y, z) is a joint continuous
distribution function with joint density function f(x, y, z). Let

∏∗ ∈ Q be an
optimal search path, then

20
(∫∫∫

Ci

f(x, y, z)dxdydz + ri
∂

∂ri

∫∫∫
Ci

f(x, y, z)dxdydz
)

18ri+1
∂

∂ri

∫∫∫
Ci+1

f(x, y, z)dxdydz − 18

∫∫∫
Ci−1

f(x, y, z)dxdydz (6)

− 2ri−1
∂

∂ri

∫∫∫
Ci

f(x, y, z)dxdydz − 2

∫∫∫
Ci+1

f(x, y, z)dxdydz = 0

Theorem 7.3. For the third searcher, supposing F (x, y, z) is a joint continuous
distribution function with joint density function f(x, y, z). Let

∏∗ ∈ Q be an
optimal search path, then
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30
(∫∫∫

Ci

f(x, y, z)dxdydz + ri
∂

∂ri

∫∫∫
Ci

f(x, y, z)dxdydz
)

27ri+1
∂

∂ri

∫∫∫
Ci+1

f(x, y, z)dxdydz − 27

∫∫∫
Ci−1

f(x, y, z)dxdydz (7)

− 3ri−1
∂

∂ri

∫∫∫
Ci

f(x, y, z)dxdydz − 3

∫∫∫
Ci+1

f(x, y, z)dxdydz = 0

Theorem 7.4. For the fourth searcher, supposing F (x, y, z) is a joint continuous
distribution function with joint density function f(x, y, z). Let

∏∗ ∈ Q be an
optimal search path, then

40
(∫∫∫

Ci

f(x, y, z)dxdydz + ri
∂

∂ri

∫∫∫
Ci

f(x, y, z)dxdydz
)

36ri+1
∂

∂ri

∫∫∫
Ci+1

f(x, y, z)dxdydz − 36

∫∫∫
Ci−1

f(x, y, z)dxdydz (8)

− 4ri−1
∂

∂ri

∫∫∫
Ci

f(x, y, z)dxdydz − 4

∫∫∫
Ci+1

f(x, y, z)dxdydz = 0

We deduce that, if Q′ is a subclass of Q for which only one element, and if
r∗ is an optimal search path; then the optimal search path will be

∏∗ ∈ Q′ . The
search path

∏
is optimal search path if r∗ = {r∗i − r∗i−1, i = 1, 2, · · · , n}, so the

condition on considering distribution, will be
∏∗ = {

∏∗
i , i =, 2, · · · , n} from

class Q such that D(
∏∗, F ) = inf{D(

∏
, F ) :

∏
∈ Q}.

Now a complex optimization problem appears, where we have n−number of vari-
ables; that is, r = {ri−ri−1, i = 1, 2, · · · , n} . The following nonlinear optimiza-
tion problem NLOP reads:
NLOP:
min
ri

D(
∏
, F ),

Subject to ri − ri−1 > 0, 0 6
∫∫∫
Ci

f(x, y, z)dxdydz 6 1,∀i = 1, 2, · · · , n.

where,

n∑
i=1

[
(9ri − ri−1)

(∫∫∫
Ci

f(x, y, z)dxdydz −
∫∫∫
Ci−1

f(x, y, z)dxdydz
)]

(9)
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n∑
i=1

[
(18ri − 2ri−1)

(∫∫∫
Ci

f(x, y, z)dxdydz −
∫∫∫
Ci−1

f(x, y, z)dxdydz
)]

(10)

n∑
i=1

[
(27ri − 3ri−1)

(∫∫∫
Ci

f(x, y, z)dxdydz −
∫∫∫
Ci−1

f(x, y, z)dxdydz
)]

(11)

n∑
i=1

[
(36ri − 4ri−1)

(∫∫∫
Ci

f(x, y, z)dxdydz −
∫∫∫
Ci−1

f(x, y, z)dxdydz
)]

(12)

8 The case of trivariate standard normal distribu-
tion

Assume that X, Y, Z are three independent random variables which represent the
position of the target and have a trivariate standard normal distribution where µ1 =
µ2 = µ3 = 0 and σ2

1 = σ2
2 = σ2

3 = 1.
Thus, the joint probability density function of the trivarite standard normal

distribution will become:

f(x, y, z) =

(
1√
2π

)3

e−
1
2(x2+y2+z2), where −∞ < x <∞, (13)

−∞ < y <∞, −∞ < z <∞.

Supposing the spherical coordinates x = ρ sinφ cos θ,y = ρ sinφ sin θ, z =
ρ cosφ, we obtain:

D
(∏

, F
)

=
n∑
i=1

[
(9ri − ri−1)

{∫ π

0

∫ 2π

0

∫ ri

0

g(ρ, ϕ, θ)ρ2 sinφdρdϕdθ

−
∫ π

0

∫ 2π

0

∫ ri−1

0

g(ρ, ϕ, θ)ρ2 sinφdρdϕdθ

}]

=
n∑
i=1

[
(9ri − ri−1)

{∫ π

0

∫ 2π

0

∫ ri

0

(
1√
2π

)3

e−
1
2
ρ2ρ2 sinφdρdϕdθ

17



−
∫ π

0

∫ 2π

0

∫ ri

0

(
1√
2π

)3

e−
1
2
ρ2ρ2 sinφdρdϕdθ

}]

=
1

2
√

2π

n∑
i=1

[9ri − ri−1]

{∫ ri

0

ρ2e−
1
2
ρ2dρ−

∫ ri−1

0

ρ2e−
1
2
ρ2dρ

}
Consequently,

D
(∏

, F
)

=
1

2
√

2π

n∑
i=1

[9ri− ri−1]×

×
[√

π

2
Erf

(
ri√
2

)
− rie−

1
2
r2i +

√
π

2
Erf

(
ri−1√

2

)
− ri−1e

− 1
2
r2i−1

]
(14)

where Erf represents the error function, in the usual approach, the distances are
changed according to the probability of the target. Therefore, the above NLOP
becomes: NLOP1:

min
ri

{
1

2
√

2π

n∑
i=1

[9ri− ri−1] ×

×
[√

π

2
Erf

(
ri√
2

)
− rie−

1
2
r2i +

√
π

2
Erf

(
ri−1√

2

)
− ri−1e

− 1
2
r2i−1

]}
,

Subject to ri − ri−1√
π

2
Erf

(
ri√
2

)
− rie−

1
2
r2i − 1

2
√

2π
,∀i = 1, 2, ..., n.

Assuming the convexity of D(
∏
, F ) , by using Kuhn-Tucker conditions:

∂D(
∏
, F )

∂ri
+

2∑
ε=1

uε
∂Nε(ri)

∂ri
= 0

Nε(ri) ≤ 0,

uεNε(ri) = 0,

uε ≥ 0.

necessary conditions of r∗ = r∗i − r∗i−1, i = 1, 2, ..., n, are calculated as follows:

1

2
√

2π

n∑
i=1

{
9
[√π

2
erf(

ri√
2

)− rie−
1
2
r2i +

√
π

2
erf(

ri−1√
2

)− ri−1e
− 1

2
r2i−1

]
+ (9ri − ri−1)

[
r2
i e
− 1

2
r2i

]}
+ u1(1) + u2

(
r2
i e
− 1

2
(ri)

2
)

= 0, (15)
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u1 (ri−1 − ri
) = 0, (16)

u2

(√
π

2
erf

(
ri√
2

)
− rie−

r2
i
2 − 1

2
√

2π

)
= 0. (17)

Now, we have different cases to solve (15), (16) and (17).

1. uε = 0, ε = 1, 2;

2. uε > 0, ε = 1, 2; and

3. u℘ > 0, ℘ ∈ {1, 2} and uε = 0, ε = 1, 2, ℘ 6= ε.

We found that the optimal values of ri, i = 1, 2, ..., n are given only from Case 1.
We used iteration method where the initial valuer0 = 0, as a result the optimal
distances r∗i , i = 1, 2, ..., n after solving the following equation:

n∑
i=1

{
9
[√π

2
erf(

ri√
2

)− rie−
1
2
r2i +

√
π

2
erf(

ri−1√
2

)− ri−1e
− 1

2
r2i−1

]
+ (9ri − ri−1)

[
r2
i e
− 1

2
r2i

]}
= 0 (18)

By substituting in (14), we will obtain the minimum expected search time for
detecting the target.

9 Application
Our main purpose of this application is calculating the optimal values r∗i , i =
1, 2, ..., n. Certainly, these values help the searcher to find the lost black box, then
determines the cause of air crash in the least possible time where minimizing the
cost (time).
By solving numerically, also using mathematica and maple, A.H.El-Bagoury et
al. [12] illustrated the optimal values, i = 1, 2, 3 and 4. We benefit from previous
results and developed the paper published in to a different search technique.
The results commensurate with our search problem will be as in the taple (1)

Table 1: The optimal values
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n r∗i (1st searcher) 2r∗i (2nd searcher) 3r∗i (3rd searcher) 4r∗i (4th searcher)
1 2.15991×10−8 4.31982×10−8 6.47973×10−8 8.63964×10−8

2 0.0000242396 4.84792×10−5 7.27188×10−5 9.69584×10−5

3 0.000754752 0.001509504 0.002264256 0.003019008
4 0.168538 0.337076 0.505614 0.674152

The application shows that, the first searcher starts at a point (0, 0, 0) and should
go a distance r∗1 = 2.15991 × 10−8 (length unit), then the searcher should search
for the target in the first cubic C1 and its tracks until reaches the point (2.15991×
10−8, 0, 0), completing searching if the target still not located , going forward with
distance 0.0000242396 to explore the cubic C2 and its tracks. . . etc.by similarity
,the second, third and fourth searchers.
Certainly, the numerical calculations we obtained provide important results; that
is; the optimal values we obtain,is increasing, it confirming our technique accu-
racy.

10 Conclusions and future work.
We have designed a new search technique in the 3-D space, we obtained the ex-
pected value of the time and calculated the optimal search path where minimizing
the expected value of the time to detect the lost black box, the accuracy of the
technique is illustrated in a numerical example.
In future work, we will investigate interesting search problem, coordinated search
strategy for a randomly located target in 3-D by using four searcher. In particular
we plan to analyze a medical application to benefit from the results in the current
manuscript in the discovery of diseases or tumors.
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