12 research outputs found
Poly I:C enhances cycloheximide-induced apoptosis of tumor cells through TLR3 pathway
<p>Abstract</p> <p>Background</p> <p>Toll-like receptor 3 (TLR3) is a critical component of the innate immune response to dsRNA viruses, which was considered to be mainly expressed in immune cells and some endothelial cells. In this study, we investigated the expression and proapoptotic activity of TLR3 in human and murine tumor cell lines.</p> <p>Methods</p> <p>RT-PCR and FACS analysis were used to detect expression of TLR3 in various human and murine tumor cell lines. All tumor cell lines were cultured with poly I:C, CHX, or both for 12 h, 24 h, 72 h, and then the cell viability was analyzed with CellTiter 96<sup>® </sup>AQueous One Solution, the apoptosis was measured by FACS with Annexin V and PI staining. Production of Type I IFN in poly I:C/CHX mediated apoptosis were detected through western blotting. TLR3 antibodies and IFN-β antibodies were used in Blockade and Neutralization Assay.</p> <p>Results</p> <p>We show that TLR3 are widely expressed on human and murine tumor cell lines, and activation of TLR3 signaling in cancerous cells by poly I:C made Hela cells (human cervical cancer) and MCA38 cells (murine colon cancer) become dose-dependently sensitive to protein synthesis inhibitor cycloheximide (CHX)-induced apoptosis. Blockade of TLR3 recognition with anti-TLR3 antibody greatly attenuated the proapoptotic effects of poly I:C on tumor cells cultured with CHX. IFN-β production was induced after poly I:C/CHX treatment and neutralization of IFN-β slightly reduced poly I:C/CHX -induced apoptosis.</p> <p>Conclusion</p> <p>Our study demonstrated the proapoptotic activity of TLR3 expressed by various tumor cells, which may open a new range of clinical applications for TLR3 agonists as an adjuvant of certain cancer chemotherapy.</p
Role of the Mitochondria in Immune-Mediated Apoptotic Death of the Human Pancreatic β Cell Line βLox5
Mitochondria are indispensable in the life and death of many types of eukaryotic cells. In pancreatic beta cells, mitochondria play an essential role in the secretion of insulin, a hormone that regulates blood glucose levels. Unregulated blood glucose is a hallmark symptom of diabetes. The onset of Type 1 diabetes is preceded by autoimmune-mediated destruction of beta cells. However, the exact role of mitochondria has not been assessed in beta cell death. In this study, we examine the role of mitochondria in both Fas- and proinflammatory cytokine-mediated destruction of the human beta cell line, βLox5. IFNγ primed βLox5 cells for apoptosis by elevating cell surface Fas. Consequently, βLox5 cells were killed by caspase-dependent apoptosis by agonistic activation of Fas, but only after priming with IFNγ. This beta cell line undergoes both apoptotic and necrotic cell death after incubation with the combination of the proinflammatory cytokines IFNγ and TNFα. Additionally, both caspase-dependent and -independent mechanisms that require proper mitochondrial function are involved. Mitochondrial contributions to βLox5 cell death were analyzed using mitochondrial DNA (mtDNA) depleted βLox5 cells, or βLox5 ρ0 cells. βLox5 ρ0 cells are not sensitive to IFNγ and TNFα killing, indicating a direct role for the mitochondria in cytokine-induced cell death of the parental cell line. However, βLox5 ρ0 cells are susceptible to Fas killing, implicating caspase-dependent extrinsic apoptotic death is the mechanism by which these human beta cells die after Fas ligation. These data support the hypothesis that immune mediators kill βLox5 cells by both mitochondrial-dependent intrinsic and caspase-dependent extrinsic pathways
Pancreatic β-Cell Death in Response to Pro-Inflammatory Cytokines Is Distinct from Genuine Apoptosis
A reduction in functional β-cell mass leads to both major forms of diabetes; pro-inflammatory cytokines, such as interleukin-1beta (IL-1β) and gamma-interferon (γ-IFN), activate signaling pathways that direct pancreatic β-cell death and dysfunction. However, the molecular mechanism of β-cell death in this context is not well understood. In this report, we tested the hypothesis that individual cellular death pathways display characteristic phenotypes that allow them to be distinguished by the precise biochemical and metabolic responses that occur during stimulus-specific initiation. Using 832/13 and INS-1E rat insulinoma cells and isolated rat islets, we provide evidence that apoptosis is unlikely to be the primary pathway underlying β-cell death in response to IL-1β+γ-IFN. This conclusion was reached via the experimental results of several different interdisciplinary strategies, which included: 1) tandem mass spectrometry to delineate the metabolic differences between IL-1β+γ-IFN exposure versus apoptotic induction by camptothecin and 2) pharmacological and molecular interference with either NF-κB activity or apoptosome formation. These approaches provided clear distinctions in cell death pathways initiated by pro-inflammatory cytokines and bona fide inducers of apoptosis. Collectively, the results reported herein demonstrate that pancreatic β-cells undergo apoptosis in response to camptothecin or staurosporine, but not pro-inflammatory cytokines
Tipping the balance between necrosis and apoptosis in human and murine cells treated with interferon and dsRNA
Interferons enhance the cellular antiviral response by inducing expression of protective proteins. Many of these proteins are activated by dsRNA, a typical by-product of viral infection. Here we show that type-I and type-II interferons can sensitize cells to dsRNA-induced cytotoxicity. In caspase-8-or FADD-deficient Jurkat cells dsRNA induces necrosis, instead of apoptosis. In L929sA cells dsRNA-induced necrosis involves high reactive oxygen species production. The antioxidant butylated hydroxyanisole protects cells from necrosis, but shifts the response to apoptosis. Treatment with the caspase inhibitor benzyloxycarbonyl-Val-Ala-DL-Asp(OMe)-fluoromethylketone or overexpression ot Bcl-2 prevent this shift and promote necrosis. Our results suggest that a single stimulus can initiate different death-signaling pathways, leading to either necroticor apoptotic cell death. Inhibition of key events in these signaling pathways, such as caspase activation, cytochrome c release or mitochondrial reactive oxygen species production, tips the balance between necrosis and apoptoslis, leading to dominance of one of these death programs.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
Preinduction of HSP70 promotes hypoxic tolerance and facilitates acclimatization to acute hypobaric hypoxia in mouse brain
It has been shown that induction of HSP70 by administration of geranylgeranylacetone (GGA) leads to protection against ischemia/reperfusion injury. The present study was performed to determine the effect of GGA on the survival of mice and on brain damage under acute hypobaric hypoxia. The data showed that the mice injected with GGA survived significantly longer than control animals (survival time of 9.55 ± 3.12 min, n = 16 vs. controls at 4.28 ± 4.29 min, n = 15, P < 0.005). Accordingly, the cellular necrosis or degeneration of the hippocampus and the cortex induced by sublethal hypoxia for 6 h could be attenuated by preinjection with GGA, especially in the CA2 and CA3 regions of the hippocampus. In addition, the activity of nitric oxide synthase (NOS) of the hippocampus and the cortex was increased after exposure to sublethal hypoxia for 6 h but could be inhibited by the preinjection of GGA. Furthermore, the expression of HSP70 was significantly increased at 1 h after GGA injection. These results suggest that administration of GGA improved survival rate and prevented acute hypoxic damage to the brain and that the underlying mechanism involved induction of HSP70 and inhibition of NOS activity