35 research outputs found
Stimulus saliency modulates pre-attentive processing speed in human visual cortex
The notion of a saliency-based processing architecture [1] underlying human vision is central to a number of current theories of visual selective attention [e.g., 2]. On this view, focal-attention is guided by an overall-saliency map of the scene, which integrates (sums) signals from pre-attentive sensory feature-contrast computations (e. g., for color, motion, etc.). By linking the Posterior Contralateral Negativity (PCN) component to reaction time (RT) performance, we tested one specific prediction of such salience summation models: expedited shifts of focal-attention to targets with low, as compared to high, target-distracter similarity. For two feature-dimensions (color and orientation), we observed decreasing RTs with increasing target saliency. Importantly, this pattern was systematically mirrored by the timing, as well as amplitude, of the PCN. This pattern demonstrates that visual saliency is a key determinant of the time it takes for focal-attention to be engaged onto the target item, even when it is just a feature singleton
Novel catalytic materials for degradation of Chlorinated organic compounds in water
Novel reactive materials for catalytic degradation of chlorinated organic compounds in water at ambient conditions have been prepared on the basis of silica-supported Pd-Fe nanoparticles. Nanoscale Fe-Pd particles were synthesized inside porous silica supports using (NH4)3[Fe(C2O4)3] and [Pd(NH3)4]Cl2 or Pd acetate as reaction precursors. According to temperature programmed reduction (TPR) studies, Pd introduction decreased the reduction temperature of the supported Fen+ species and nearly complete reduction with H2 was observed at 400 °C. The successful surface loading with Pd was confirmed by X-ray photoelectron spectroscopy (XPS) analysis. Characterization of the samples by X-ray diffraction (XRD) and X-ray absorption near-edge structure + extended X-ray absorption fine structure (XANES + EXAFS) verified the presence of highly dispersed Pd0, Pdx Fe1–x and Fe0 phases. Reduction of the supported precursors in hydrogen resulted in materials that were highly active in perchloroethene (PCE) degradation and 2-chlorobiphenyl (2-ClBP) dechlorination. It was found that highly dispersed amorphous Fe-Pd bimetallic nanoparticles on silica support showed superior catalytic activity against PCE dechlorination in comparison to the free-standing Fe-Pd nanoparticles. For the samples with the same Fe content, the conversion of chlorinated organics as well as the stability increased with the Pd loading, e.g., the most effective degradation of PCEs and 2-ClBP was achieved at a Pd loading of 2.3–3.2 wt. %