253 research outputs found
The strength of co-authorship in gene name disambiguation
<p>Abstract</p> <p>Background</p> <p>A biomedical entity mention in articles and other free texts is often ambiguous. For example, 13% of the gene names (aliases) might refer to more than one gene. The task of Gene Symbol Disambiguation (GSD) – a special case of Word Sense Disambiguation (WSD) – is to assign a unique gene identifier for all identified gene name aliases in biology-related articles. Supervised and unsupervised machine learning WSD techniques have been applied in the biomedical field with promising results. We examine here the utilisation potential of the fact – one of the special features of biological articles – that the authors of the documents are known through graph-based semi-supervised methods for the GSD task.</p> <p>Results</p> <p>Our key hypothesis is that a biologist refers to each particular gene by a fixed gene alias and this holds for the co-authors as well. To make use of the co-authorship information we decided to build the inverse co-author graph on MedLine abstracts. The nodes of the inverse co-author graph are articles and there is an edge between two nodes if and only if the two articles have a mutual author. We introduce here two methods using distances (based on the graph) of abstracts for the GSD task. We found that a disambiguation decision can be made in 85% of cases with an extremely high (99.5%) precision rate just by using information obtained from the inverse co-author graph. We incorporated the co-authorship information into two GSD systems in order to attain full coverage and in experiments our procedure achieved precision of 94.3%, 98.85%, 96.05% and 99.63% on the human, mouse, fly and yeast GSD evaluation sets, respectively.</p> <p>Conclusion</p> <p>Based on the promising results obtained so far we suggest that the co-authorship information and the circumstances of the articles' release (like the title of the journal, the year of publication) can be a crucial building block of any sophisticated similarity measure among biological articles and hence the methods introduced here should be useful for other biomedical natural language processing tasks (like organism or target disease detection) as well.</p
Infection of the Central Nervous System, Sepsis and Amyotrophic Lateral Sclerosis
Severe infections may lead to chronic inflammation in the central nervous system (CNS) which may in turn play a role in the etiopathogenesis of amyotrophic lateral sclerosis (ALS). The relentless progression and invasive supportive treatments of ALS may on the other hand induce severe infections among ALS patients.The present study included 4,004 ALS patients identified from the Swedish Patient Register during 1991-2007 and 20,020 age and sex matched general population controls. Conditional logistic regression was used to estimate the odds ratios (ORs) of ALS given a previous hospitalization for CNS infection or sepsis. Cox models were used to estimate the hazard ratios (HRs) of hospitalization for CNS infection or sepsis after ALS diagnosis. Overall, previous CNS infection (OR: 1.3, 95% confidence interval [CI]: 0.8, 2.4) or sepsis (OR: 1.2, 95% CI: 0.9, 1.6) was not associated with ALS risk. However, compared to ALS free individuals, ALS cases were more likely to be hospitalized for sepsis after diagnosis (HR: 2.6, 95% CI: 1.9, 3.5). We did not observe a higher risk of CNS infection after ALS diagnosis.Our results suggest that acute and severe infections unlikely contribute to the development of ALS; however, ALS patients are at a higher risk of sepsis after diagnosis, compared to ALS free individuals
Over-expression of ST3Gal-I promotes mammary tumorigenesis
Changes in glycosylation are common in malignancy, and as almost all surface proteins are glycosylated, this can dramatically affect the behavior of tumor cells. In breast carcinomas, the O-linked glycans are frequently truncated, often as a result of premature sialylation. The sialyltransferase ST3Gal-I adds sialic acid to the galactose residue of core 1 (Galβ1,3GalNAc) O-glycans and this enzyme is over-expressed in breast cancer resulting in the expression of sialylated core 1 glycans. In order to study the role of ST3Gal-I in mammary tumor development, we developed transgenic mice that over-express the sialyltransferase under the control of the human membrane-bound mucin 1 promoter. These mice were then crossed with PyMT mice that spontaneously develop mammary tumors. As expected, ST3Gal-I transgenic mice showed increased activity and expression of the enzyme in the pregnant and lactating mammary glands, the stomach, lungs and intestine. Although no obvious defects were observed in the fully developed mammary gland, when these mice were crossed with PyMT mice, a highly significant decrease in tumor latency was observed compared to the PyMT mice on an identical background. These results indicate that ST3Gal-I is acting as a tumor promoter in this model of breast cancer. This, we believe, is the first demonstration that over-expression of a glycosyltransferase involved in mucin-type O-linked glycosylation can promote tumorigenesis
Coxiella burnetii Phagocytosis Is Regulated by GTPases of the Rho Family and the RhoA Effectors mDia1 and ROCK
The GTPases belonging to the Rho family control the actin cytoskeleton rearrangements needed for particle internalization during phagocytosis. ROCK and mDia1 are downstream effectors of RhoA, a GTPase involved in that process. Coxiella burnetii, the etiologic agent of Q fever, is internalized by the host´s cells in an actin-dependent manner. Nevertheless, the molecular mechanism involved in this process has been poorly characterized. This work analyzes the role of different GTPases of the Rho family and some downstream effectors in the internalization of C. burnetii by phagocytic and non-phagocytic cells. The internalization of C. burnetii into HeLa and RAW cells was significantly inhibited when the cells were treated with Clostridium difficile Toxin B which irreversibly inactivates members of the Rho family. In addition, the internalization was reduced in HeLa cells that overexpressed the dominant negative mutants of RhoA, Rac1 or Cdc42 or that were knocked down for the Rho GTPases. The pharmacological inhibition or the knocking down of ROCK diminished bacterium internalization. Moreover, C. burnetii was less efficiently internalized in HeLa cells overexpressing mDia1-N1, a dominant negative mutant of mDia1, while the overexpression of the constitutively active mutant mDia1-ΔN3 increased bacteria uptake. Interestingly, when HeLa and RAW cells were infected, RhoA, Rac1 and mDia1 were recruited to membrane cell fractions. Our results suggest that the GTPases of the Rho family play an important role in C. burnetii phagocytosis in both HeLa and RAW cells. Additionally, we present evidence that ROCK and mDia1, which are downstream effectors of RhoA, are involved in that processFil: Salinas Ojeda, Romina Paola. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Cienicas Médicas. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos; ArgentinaFil: Ortiz Flores, Rodolfo Matias. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Cienicas Médicas. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos; ArgentinaFil: Distel, Jesús Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Cienicas Médicas. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos; ArgentinaFil: Aguilera, Milton Osmar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Cienicas Médicas. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos; ArgentinaFil: Colombo, Maria Isabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Cienicas Médicas. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos; ArgentinaFil: Beron, Walter. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Cienicas Médicas. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos; Argentin
Effect of systemic transplantation of bone marrow-derived mesenchymal stem cells on neuropathology markers in APP/PS1 Alzheimer mice
Mesenchymal stem cells (MSC) have recently attracted interest as a potential basis for a cell based therapy of AD. We investigated the putative immune-modulatory effects in neuroinflammation of systemic transplantation of MSC into APP/PS1 transgenic mice.10(6) MSC were injected into APP/PS1 mice via the tail vein and histological analysis was performed for microglia and amyloid (pE3-A[beta]) plaque numbers, glial distribution and pE3-A[beta] plaque size. In addition, a biochemical analysis by qPCR for pro-inflammatory, chemoattractant and neurotrophic factors was performed.MSC co-localized with pE3-A[beta] plaques. The effects of transplantation on microglia-associated pathology could be observed after 28 hours. Animals showed a reduction in microglial numbers in the cortex and in size. Gene expression was reduced for TNF-[alpha], IL-6, MCP-1, and for NGF, in MSC recipients. Also, we investigated for the first time and found no changes in expression of IL-10, CCR5, BDNF, VEGF and IFN[gamma]. PTGER2 expression levels were increased in the hippocampus but were reduced in the cortex of MSC recipients. While there were no transplant-related changes in pE3-A[beta] plaque numbers, a reduction in the size of pE3-A[beta] plaques was observed in the hippocampus of transplant recipients.This is the first study to show reduction in pE3-A[beta] plaque size. pE3-A[beta] plaques have gained attention as potential key participants in AD due to their increased aggregation propensity, the possibility for the initial seeding event, resistance against degradation and neurotoxicity. These findings support the hypothesis that MSC-transplants may affect AD pathology via an immune modulatory function that includes an effect on microglial cells
Neuroinflammation, Mast Cells, and Glia: Dangerous Liaisons
The perspective of neuroinflammation as an epiphenomenon following neuron damage is being replaced by the awareness of glia and their importance in neural functions and disorders. Systemic inflammation generates signals that communicate with the brain and leads to changes in metabolism and behavior, with microglia assuming a pro-inflammatory phenotype. Identification of potential peripheral-to-central cellular links is thus a critical step in designing effective therapeutics. Mast cells may fulfill such a role. These resident immune cells are found close to and within peripheral nerves and in brain parenchyma/meninges, where they exercise a key role in orchestrating the inflammatory process from initiation through chronic activation. Mast cells and glia engage in crosstalk that contributes to accelerate disease progression; such interactions become exaggerated with aging and increased cell sensitivity to stress. Emerging evidence for oligodendrocytes, independent of myelin and support of axonal integrity, points to their having strong immune functions, innate immune receptor expression, and production/response to chemokines and cytokines that modulate immune responses in the central nervous system while engaging in crosstalk with microglia and astrocytes. In this review, we summarize the findings related to our understanding of the biology and cellular signaling mechanisms of neuroinflammation, with emphasis on mast cell-glia interactions
The Spider Effect: Morphological and Orienting Classification of Microglia in Response to Stimuli in Vivo
The different morphological stages of microglial activation have not yet been described in detail. We transected the olfactory bulb of rats and examined the activation of the microglial system histologically. Six stages of bidirectional microglial activation (A) and deactivation (R) were observed: from stage 1A to 6A, the cell body size increased, the cell process number decreased, and the cell processes retracted and thickened, orienting toward the direction of the injury site; until stage 6A, when all processes disappeared. In contrast, in deactivation stages 6R to 1R, the microglia returned to the original site exhibiting a stepwise retransformation to the original morphology. Thin highly branched processes re-formed in stage 1R, similar to those in stage 1A. This reverse transformation mirrored the forward transformation except in stages 6R to 1R: cells showed multiple nuclei which were slowly absorbed. Our findings support a morphologically defined stepwise activation and deactivation of microglia cells
Differential Carbohydrate Recognition by Campylobacter jejuni Strain 11168: Influences of Temperature and Growth Conditions
The pathogenic clinical strain NCTC11168 was the first Campylobacter jejuni strain to be sequenced and has been a widely used laboratory model for studying C. jejuni pathogenesis. However, continuous passaging of C. jejuni NCTC11168 has been shown to dramatically affect its colonisation potential. Glycan array analysis was performed on C. jejuni NCTC11168 using the frequently passaged, non-colonising, genome sequenced (11168-GS) and the infrequently passaged, original, virulent (11168-O) isolates grown or maintained under various conditions. Glycan structures recognised and bound by C. jejuni included terminal mannose, N-acetylneuraminic acid, galactose and fucose. Significantly, it was found that only when challenged with normal oxygen at room temperature did 11168-O consistently bind to sialic acid or terminal mannose structures, while 11168-GS bound these structures regardless of growth/maintenance conditions. Further, binding of un-capped galactose and fucosylated structures was significantly reduced when C. jejuni was maintained at 25°C under atmospheric oxygen conditions. These binding differences identified through glycan array analysis were confirmed by the ability of specific lectins to competitively inhibit the adherence of C. jejuni to a Caco-2 intestinal cell line. Our data suggests that the binding of mannose and/or N-acetylneuraminic acid may provide the initial interactions important for colonisation following environmental exposure
Advancing sepsis clinical research: harnessing transcriptomics for an omics-based strategy - a comprehensive scoping review
Sepsis continues to be recognized as a significant global health challenge across all ages and is characterized by a complex pathophysiology. In this scoping review, PRISMA-ScR guidelines were adhered to, and a transcriptomic methodology was adopted, with the protocol registered on the Open Science Framework. We hypothesized that gene expression analysis could provide a foundation for establishing a clinical research framework for sepsis. A comprehensive search of the PubMed database was conducted with a particular focus on original research and systematic reviews of transcriptomic sepsis studies published between 2012 and 2022. Both coding and non-coding gene expression studies have been included in this review. An effort was made to enhance the understanding of sepsis at the mRNA gene expression level by applying a systems biology approach through transcriptomic analysis. Seven crucial components related to sepsis research were addressed in this study: endotyping (n = 64), biomarker (n = 409), definition (n = 0), diagnosis (n = 1098), progression (n = 124), severity (n = 451), and benchmark (n = 62). These components were classified into two groups, with one focusing on Biomarkers and Endotypes and the other oriented towards clinical aspects. Our review of the selected studies revealed a compelling association between gene transcripts and clinical sepsis, reinforcing the proposed research framework. Nevertheless, challenges have arisen from the lack of consensus in the sepsis terminology employed in research studies and the absence of a comprehensive definition of sepsis. There is a gap in the alignment between the notion of sepsis as a clinical phenomenon and that of laboratory indicators. It is potentially responsible for the variable number of patients within each category. Ideally, future studies should incorporate a transcriptomic perspective. The integration of transcriptomic data with clinical endpoints holds significant potential for advancing sepsis research, facilitating a consensus-driven approach, and enabling the precision management of sepsis
- …