145 research outputs found

    Accuracy of eight-polar bioelectrical impedance analysis for the assessment of total and appendicular body composition in peritoneal dialysis patients

    Get PDF
    Objective: To establish the accuracy of bioelectrical impedance analysis (BIA) for the assessment of total and appendicular body composition in peritoneal dialysis (PD) patients. Design: Cross-sectional study. Setting: University Nephrology Clinic. Subjects: In all, 20 PD patients and 77 healthy controls matched for gender, age and body mass index. Methods: Whole-body fat-free mass (FFM) and appendicular lean tissue mass (LTM) were measured by dual-energy X-ray absorptiometry. Resistance ( R) of arms, trunk and legs was measured by eight-polar BIA at frequencies of 5, 50, 250 and 500 kHz. Whole-body resistance was calculated as the sum of R of arms, trunk and legs. The resistance index ( RI) was calculated as the ratio between squared height and whole-body or segmental R. Results: RI at 500 kHz was the best predictor of FFM, LTMarm and LTMleg in both PD patients and controls. Equations developed on controls overestimated FFM and LTMarm and underestimated LTMleg when applied to PD patients. Specific equations were thus developed for PD patients. Using these equations, the percent root mean-squared errors of the estimate for PD patients vs controls were 5 vs 6% for FFM, 8 vs 8% for LTMarm and 7 vs 8% for LTMleg. Conclusion: Eight-polar BIA offers accurate estimates of total and appendicular body composition in PD patients, provided that population-specific equations are used

    Protective effect of leptin against ischemia-reperfusion injury in the rat small intestine

    Get PDF
    BACKGROUND: The small intestine is extremely sensitive to ischemia-reperfusion (I/R) injury and a range of microcirculatory disturbances which contribute to tissue damage. Previous studies have shown that leptin plays an important physiological role in the microvasculature. The aim of this study was to evaluate the protective effects of leptin in I/R – induced mucosal injury in the small intestine. METHODS: Forty rats were divided into 5 groups (n = 8). Group I was subjected to a sham operation. Following mesenteric ischemia in group II (control); physiologic saline 1 cm(3), in group III; leptin 100 μg/kg, and physiologic saline 1 cm(3), in group IV; N(G)-L-arginine methyl ester (L-NAME) 20 mg/kg, and physiologic saline 1 cm(3), in group V; leptin 100 μg/kg, L-NAME 20 mg/kg, and physiologic saline 1 cm(3 )were given intra-peritoneally. In these groups, an I/R procedure was performed by occlusion of the superior mesenteric artery for 45 min followed by 120 min reperfusion. After reperfusion, the small intestines were resected for malondialdehyde (MDA) and nitric oxide (NO) concentration and histopathologic properties. Mucosal lesions were scored between 0 and 5. Tissue MDA and NO concentration and histopathologic grades were compared statistically. RESULTS: Tissue MDA level significantly increased (P < 0.05), tissue NO level significantly decreased in group V animals, compared to group III animals respectively (P < 0.001). Histopathologically, intestinal injury significantly decreased in the leptin treated ischemic group. CONCLUSION: Leptin can be used safely in mesenteric occlusive diseases, since it induces NO formation and release in mesenteric vessels

    R5-SHIV Induces Multiple Defects in T Cell Function during Early Infection of Rhesus Macaques Including Accumulation of T Reg Cells in Lymph Nodes

    Get PDF
    Background: HIV-1 is a pathogen that T cell responses fail to control. HIV-1gp120 is the surface viral envelope glycoprotein that interacts with CD4 T cells and mediates entry. HIV-1gp120 has been implicated in immune dysregulatory functions that may limit anti-HIV antigen-specific T cell responses. We hypothesized that in the context of early SHIV infection, immune dysregulation of antigen-specific T-effector cell and regulatory functions would be detectable and that these would be associated or correlated with measurable concentrations of HIV-1gp120 in lymphoid tissues. Methods: Rhesus macaques were intravaginally inoculated with a Clade C CCR5-tropic simian-human immunodeficiency virus, SHIV-1157ipd3N4. HIV-1gp120 levels, antigen-specificity, levels of apoptosis/anergy and frequency and function of Tregs were examined in lymph node and blood derived T cells at 5 and 12 weeks post inoculation. Results/Conclusions: We observed reduced responses to Gag in CD4 and gp120 in CD8 lymph node-derived T cells compared to the peripheral blood at 5 weeks post-inoculation. Reduced antigen-specific responses were associated with higher levels of PD-1 on lymph node-derived CD4 T cells as compared to peripheral blood and uninfected lymph node-derived CD4 T cells. Lymph nodes contained increased numbers of Tregs as compared to peripheral blood, which positively correlated with gp120 levels; T regulatory cell depletion restored CD8 T cell responses to Gag but not to gp120. HIV gp120 was also able to induce T regulatory cell chemotaxis in a dose-dependent, CCR5-mediated manner. These studies contribute to our broader understanding of the ways in which HIV-1 dysregulates T cell function and localization during early infection

    Inflammasome-dependent Pyroptosis and IL-18 Protect against Burkholderia pseudomallei Lung Infection while IL-1β Is Deleterious

    Get PDF
    Burkholderia pseudomallei is a Gram-negative bacterium that infects macrophages and other cell types and causes melioidosis. The interaction of B. pseudomallei with the inflammasome and the role of pyroptosis, IL-1β, and IL-18 during melioidosis have not been investigated in detail. Here we show that the Nod-like receptors (NLR) NLRP3 and NLRC4 differentially regulate pyroptosis and production of IL-1β and IL-18 and are critical for inflammasome-mediated resistance to melioidosis. In vitro production of IL-1β by macrophages or dendritic cells infected with B. pseudomallei was dependent on NLRC4 and NLRP3 while pyroptosis required only NLRC4. Mice deficient in the inflammasome components ASC, caspase-1, NLRC4, and NLRP3, were dramatically more susceptible to lung infection with B. pseudomallei than WT mice. The heightened susceptibility of Nlrp3-/- mice was due to decreased production of IL-18 and IL-1β. In contrast, Nlrc4-/- mice produced IL-1β and IL-18 in higher amount than WT mice and their high susceptibility was due to decreased pyroptosis and consequently higher bacterial burdens. Analyses of IL-18-deficient mice revealed that IL-18 is essential for survival primarily because of its ability to induce IFNγ production. In contrast, studies using IL-1RI-deficient mice or WT mice treated with either IL-1β or IL-1 receptor agonist revealed that IL-1β has deleterious effects during melioidosis. The detrimental role of IL-1β appeared to be due, in part, to excessive recruitment of neutrophils to the lung. Because neutrophils do not express NLRC4 and therefore fail to undergo pyroptosis, they may be permissive to B. pseudomallei intracellular growth. Administration of neutrophil-recruitment inhibitors IL-1ra or the CXCR2 neutrophil chemokine receptor antagonist antileukinate protected Nlrc4-/- mice from lethal doses of B. pseudomallei and decreased systemic dissemination of bacteria. Thus, the NLRP3 and NLRC4 inflammasomes have non-redundant protective roles in melioidosis: NLRC4 regulates pyroptosis while NLRP3 regulates production of protective IL-18 and deleterious IL-1β

    Endothelial Dysfunction and Specific Inflammation in Obesity Hypoventilation Syndrome

    Get PDF
    BACKGROUND: Obesity hypoventilation syndrome (OHS) is associated with increased cardiovascular morbidity. What moderate chronic hypoventilation adds to obesity on systemic inflammation and endothelial dysfunction remains unknown. QUESTION: To compare inflammatory status and endothelial function in OHS versus eucapnic obese patients. METHODOLOGY: 14 OHS and 39 eucapnic obese patients matched for BMI and age were compared. Diurnal blood gazes, overnight polysomnography and endothelial function, measured by reactive hyperemia peripheral arterial tonometry (RH-PAT), were assessed. Inflammatory (Leptin, RANTES, MCP-1, IL-6, IL-8, TNFalpha, Resistin) and anti-inflammatory (adiponectin, IL-1Ra) cytokines were measured by multiplex beads immunoassays. PRINCIPAL FINDINGS: OHS exhibited a higher PaCO(2), a lower forced vital capacity (FVC) and tended to have a lower PaO(2) than eucapnic obese patients. (HS)-CRP, RANTES levels and glycated haemoglobin (HbA1c) were significantly increased in OHS (respectively 11.1+/-10.9 vs. 5.7+/-5.5 mg x l(-1) for (HS)-CRP, 55.9+/-55.3 vs 23.3+/-15.8 ng/ml for RANTES and 7.3+/-4.3 vs 6.1+/-1.7 for HbA1c). Serum adiponectin was reduced in OHS (7606+/-2977 vs 13,660+/-7854 ng/ml). Endothelial function was significantly more impaired in OHS (RH-PAT index: 0.22+/-0.06 vs 0.51+/-0.11). CONCLUSIONS: Compared to eucapnic obesity, OHS is associated with a specific increase in the pro-atherosclerotic RANTES chemokine, a decrease in the anti-inflammatory adipokine adiponectin and impaired endothelial function. These three conditions are known to be strongly associated with an increased cardiovascular risk. TRIAL REGISTRATION: ClinicalTrials.gov NCT00603096

    Urokinase Plasminogen Activator Inhibits HIV Virion Release from Macrophage-Differentiated Chronically Infected Cells via Activation of RhoA and PKCε

    Get PDF
    HIV replication in mononuclear phagocytes is a multi-step process regulated by viral and cellular proteins with the peculiar feature of virion budding and accumulation in intra-cytoplasmic vesicles. Interaction of urokinase-type plasminogen activator (uPA) with its cell surface receptor (uPAR) has been shown to favor virion accumulation in such sub-cellular compartment in primary monocyte-derived macrophages and chronically infected promonocytic U1 cells differentiated into macrophage-like cells by stimulation with phorbol myristate acetate (PMA). By adopting this latter model system, we have here investigated which intracellular signaling pathways were triggered by uPA/uPAR interaction leading the redirection of virion accumulation in intra-cytoplasmic vesicles.uPA induced activation of RhoA, PKCδ and PKCε in PMA-differentiated U1 cells. In the same conditions, RhoA, PKCδ and PKCε modulated uPA-induced cell adhesion and polarization, whereas only RhoA and PKCε were also responsible for the redirection of virions in intracellular vesicles. Distribution of G and F actin revealed that uPA reorganized the cytoskeleton in both adherent and polarized cells. The role of G and F actin isoforms was unveiled by the use of cytochalasin D, a cell-permeable fungal toxin that prevents F actin polymerization. Receptor-independent cytoskeleton remodeling by Cytochalasin D resulted in cell adhesion, polarization and intracellular accumulation of HIV virions similar to the effects gained with uPA.These findings illustrate the potential contribution of the uPA/uPAR system in the generation and/or maintenance of intra-cytoplasmic vesicles that actively accumulate virions, thus sustaining the presence of HIV reservoirs of macrophage origin. In addition, our observations also provide evidences that pathways controlling cytoskeleton remodeling and activation of PKCε bear relevance for the design of new antiviral strategies aimed at interfering with the partitioning of virion budding between intra-cytoplasmic vesicles and plasma membrane in infected human macrophages

    Alternative Complement Pathway Deregulation Is Correlated with Dengue Severity

    Get PDF
    BACKGROUND:The complement system, a key component that links the innate and adaptive immune responses, has three pathways: the classical, lectin, and alternative pathways. In the present study, we have analyzed the levels of various complement components in blood samples from dengue fever (DF) and dengue hemorrhagic fever (DHF) patients and found that the level of complement activation is associated with disease severity. METHODS AND RESULTS:Patients with DHF had lower levels of complement factor 3 (C3; p = 0.002) and increased levels of C3a, C4a and C5a (p<0.0001) when compared to those with the less severe form, DF. There were no significant differences between DF and DHF patients in the levels of C1q, immunocomplexes (CIC-CIq) and CRP. However, small but statistically significant differences were detected in the levels of MBL. In contrast, the levels of two regulatory proteins of the alternative pathway varied widely between DF and DHF patients: DHF patients had higher levels of factor D (p = 0.01), which cleaves factor B to yield the active (C3bBb) C3 convertase, and lower levels of factor H (p = 0.03), which inactivates the (C3bBb) C3 convertase, than did DF patients. When we considered the levels of factors D and H together as an indicator of (C3bBb) C3 convertase regulation, we found that the plasma levels of these regulatory proteins in DHF patients favored the formation of the (C3bBb) C3 convertase, whereas its formation was inhibited in DF patients (p<0.0001). CONCLUSION:The data suggest that an imbalance in the levels of regulatory factors D and H is associated with an abnormal regulation of complement activity in DHF patients

    Curcumin and resveratrol inhibit nuclear factor-kappaB-mediated cytokine expression in adipocytes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Adipocytes express inflammatory mediators that contribute to the low-level, chronic inflammation found in obese subjects and have been linked to the onset of cardiovascular disorders and insulin resistance associated with type 2 diabetes mellitus. A reduction in inflammatory gene expression in adipocytes would be expected to reverse this low-level, inflammatory state and improve cardiovascular function and insulin sensitivity. The natural products, curcumin and resveratrol, are established anti-inflammatory compounds that mediate their effects by inhibiting activation of NF-κB signaling. In the present study, we examined if these natural products can inhibit NF-κB activation in adipocytes and in doing so reduce cytokine expression.</p> <p>Methods</p> <p>Cytokine (TNF-α, IL-1β, IL-6) and COX-2 gene expression in 3T3-L1-derived adipocytes was measured by quantitative real-time PCR (qRT-PCR) with or without TNFα-stimulation. Cytokine protein and prostaglandin E<sub>2 </sub>(PGE<sub>2</sub>) expression were measured by ELISA. Effects of curcumin and resveratrol were evaluated by treating TNFα-stimulated adipocytes with each compound and 1) assessing the activation state of the NF-κB signaling pathway and 2) measuring inflammatory gene expression by qRT-PCR and ELISA.</p> <p>Results</p> <p>Both preadipocytes and differentiated adipocytes express the genes for TNF-α, IL-6, and COX-2, key mediators of the inflammatory response. Preadipocytes were also found to express IL-1β; however, IL-1β expression was absent in differentiated adipocytes. TNF-α treatment activated NF-κB signaling in differentiated adipocytes by inducing IκB degradation and NF-κB translocation to the nucleus, and as a result increased IL-6 (6-fold) and COX-2 (2.5-fold) mRNA levels. TNF-α also activated IL-1β gene expression in differentiated adipocytes, but had no effect on endogenous TNF-α mRNA levels. No detectable TNFα or IL-1β was secreted by adipocytes. Curcumin and resveratrol treatment inhibited NF-κB activation and resulted in a reduction of TNF-α, IL-1β, IL-6, and COX-2 gene expression (IC<sub>50 </sub>= 2 μM) and a reduction of secreted IL-6 and PGE<sub>2 </sub>(IC<sub>50 </sub>~ 20 μM).</p> <p>Conclusion</p> <p>Curcumin and resveratrol are able to inhibit TNFα-activated NF-κB signaling in adipocytes and as a result significantly reduce cytokine expression. These data suggest that curcumin and resveratrol may provide a novel and safe approach to reduce or inhibit the chronic inflammatory properties of adipose tissue.</p

    Evolutionary History of Tissue Kallikreins

    Get PDF
    The gene family of human kallikrein-related peptidases (KLKs) encodes proteins with diverse and pleiotropic functions in normal physiology as well as in disease states. Currently, the most widely known KLK is KLK3 or prostate-specific antigen (PSA) that has applications in clinical diagnosis and monitoring of prostate cancer. The KLK gene family encompasses the largest contiguous cluster of serine proteases in humans which is not interrupted by non-KLK genes. This exceptional and unique characteristic of KLKs makes them ideal for evolutionary studies aiming to infer the direction and timing of gene duplication events. Previous studies on the evolution of KLKs were restricted to mammals and the emergence of KLKs was suggested about 150 million years ago (mya). In order to elucidate the evolutionary history of KLKs, we performed comprehensive phylogenetic analyses of KLK homologous proteins in multiple genomes including those that have been completed recently. Interestingly, we were able to identify novel reptilian, avian and amphibian KLK members which allowed us to trace the emergence of KLKs 330 mya. We suggest that a series of duplication and mutation events gave rise to the KLK gene family. The prominent feature of the KLK family is that it consists of tandemly and uninterruptedly arrayed genes in all species under investigation. The chromosomal co-localization in a single cluster distinguishes KLKs from trypsin and other trypsin-like proteases which are spread in different genetic loci. All the defining features of the KLKs were further found to be conserved in the novel KLK protein sequences. The study of this unique family will further assist in selecting new model organisms for functional studies of proteolytic pathways involving KLKs
    • …
    corecore