25 research outputs found

    Volatile Organic Compounds Emitted by Fungal Associates of Conifer Bark Beetles and their Potential in Bark Beetle Control

    Full text link

    Three-way interaction among plants, bacteria, and coleopteran insects

    Get PDF

    Antennal fine morphology of the threatened beetle Osmoderma eremita (Coleoptera: Scarabaeidae), revealed by scanning electron microscopy.

    No full text
    The aim of this study was to characterize the antennal morphology of Osmoderma eremita, a threatened scarab beetle inhabiting tree hollows. O. eremita males produce a sex pheromone, (R)-(+)-γ-decalactone, responsible mainly for the attraction of females but also other males. Gross and fine morphology of microstructures including sensilla, microsculpture and pores were analyzed using Scanning Electron Microscopy. The antenna of O. eremita showed the typical lamellicorn shape of scarab beetles, with a basal scape, a pedicel, a funicle composed of five antennomeres and a club composed of three lamellae. Six different subtypes of sensilla chaetica (Ch.1 - 6), Böhm sensilla (Bo), one subtype of sensilla basiconica (Ba.1), two subtypes of sensilla coeloconica (Co.1 - 2), two subtypes of sensilla placodea (Pl.1 - 2), pores and peculiar folds were described. The two sexes did not show any significant differences in the occurrence and number of the sensilla placodea, known to be responsible for the pheromone reception. Instead, some sexual differences were found on the occurrence and topology of three different microstructures: (1) one subtype of sensillum chaeticum (Ch.2) occurring on the pedicel only in males; (2) a characteristic pore occurring on the funicle only in males; (3) a peculiar fold occurring on different antennomeres of the funicle in the two sexes, on the fourth in males and on the fifth in females. A comparison between sensilla of O. eremita and those of other Scarabaeoidea is provided. Microsc. Res. Tech., 2016. © 2016 Wiley Periodicals, Inc

    Abstract P2-03-01: Analytical validation of a standardized scoring protocol for Ki67 assessed on breast excision whole sections: An international multicenter collaboration

    No full text
    Aims: (i) Determine whether between-observer reproducibility for Ki67 when assessed on whole sections according to a standardized scoring protocol is adequate for clinical application. (ii) Compare between-observer reproducibility of Ki67 scores assessed on hot-spots to scores using a global method that averages across a tissue section.Background: The nuclear proliferation biomarker Ki67 has multiple potential roles in breast cancer, including aiding decisions based on prognosis, but unacceptable levels of between-laboratory variability have been observed. The International Ki67 in Breast Cancer Working Group has undertaken a systematic program to determine whether Ki67 measurement can be analytically validated and standardized across labs. In phase 1, variability in visual interpretation was identified as an important source of variability. Phases 2 and 3a showed that adherence to defined scoring methods substantially improved reproducibility in scoring tissue microarrays and core-cut biopsies. We now assess whether acceptable reproducibility can be achieved on whole sections.Methods: Adjacent sections from 30 primary ER+ breast cancers were centrally stained for Ki67 to assemble 4 sets of 30 stained tumor sections, circulated around 23 labs in 12 countries. Ki67 was scored by 2 methods by all labs: (a) global: 4 fields of 100 tumor cells each were selected to reflect observed heterogeneity in nuclear staining (b) hot-spot: the field with highest Ki67 percentage of tumor cells with nuclear staining was selected and up to 500 cells scored. Ki67 scores were log2-transformed for statistical analyses and back-transformed for presentation. The primary objective was to assess whether either method could achieve an intraclass correlation coefficient (ICC) significantly greater than 0.8, considered substantial to almost-perfect reproducibility. Secondary objectives were to assess which method had highest observed ICC and to assess whether observers identified the same “hot-spots”.Results: ICC for the global method was 0.87 (95%CI: 0.799-0.93), marginally meeting the prespecified success criterion. The ICC for the hot-spot method was 0.83 (95%CI: 0.74-0.90) and had a CI extending below the success criterion. Across the 23 labs, geometric mean value of the 30 scores ranged from 8.5 to 19.6 for the global method and from 12.8 to 30.3 for the hot-spot method. The overall mean (95% CI) of these values was 12.9 (11.9-14.0) and 20.9 (19.1-22.8), respectively. Visually, between-laboratory agreement in location of selected hot-spot varies between cases. The median times for scoring were 9 and 6 minutes for global and hot-spot methods respectively.Conclusions: The global method marginally met the prespecified criterion of success; it should now be evaluated for clinical validity in appropriate cohorts of cases. The hot-spot method was observed to have slightly less reproducibility between labs. The time taken for scoring by either method is practical using counting software we are making publicly available. Establishment of external quality assessment schemes is likely to improve the reproducibility between labs furthe
    corecore