77 research outputs found
Discovery of 6.035GHz Hydroxyl Maser Flares in IRAS18566+0408
We report the discovery of 6.035GHz hydroxyl (OH) maser flares toward the
massive star forming region IRAS18566+0408 (G37.55+0.20), which is the only
region known to show periodic formaldehyde (4.8 GHz H2CO) and methanol (6.7 GHz
CH3OH) maser flares. The observations were conducted between October 2008 and
January 2010 with the 305m Arecibo Telescope in Puerto Rico. We detected two
flare events, one in March 2009, and one in September to November 2009. The OH
maser flares are not simultaneous with the H2CO flares, but may be correlated
with CH3OH flares from a component at corresponding velocities. A possible
correlated variability of OH and CH3OH masers in IRAS18566+0408 is consistent
with a common excitation mechanism (IR pumping) as predicted by theory.Comment: Accepted for publication in the Astrophysical Journa
Variability monitoring of the hydroxyl maser emission in G12.889+0.489
Through a series of observations with the Australia Telescope Compact Array
we have monitored the variability of ground-state hydroxyl maser emission from
G12.889+0.489 in all four Stokes polarisation products. These observations were
motivated by the known periodicity in the associated 6.7-GHz methanol maser
emission. A total of 27 epochs of observations were made over 16 months. No
emission was seen from either the 1612 or 1720 MHz satellite line transitions
(to a typical five sigma upper limit of 0.2 Jy). The peak flux densities of the
1665 and 1667 MHz emission were observed to vary at a level of ~20% (with the
exception of one epoch which dropped by <40%). There was no distinct flaring
activity at any epoch, but there was a weak indication of periodic variability,
with a period and phase of minimum emission similar to that of methanol. There
is no significant variation in the polarised properties of the hydroxyl, with
Stokes Q and U flux densities varying in accord with the Stokes I intensity
(linear polarisation, P, varying by <20%) and the right and left circularly
polarised components varying by <33% at 1665-MHz and <38% at 1667-MHz. These
observations are the first monitoring observations of the hydroxyl maser
emission from G12.889+0.489.Comment: 7 pages, 6 figures, accepted for publication in MNRA
The Hubble Constant
I review the current state of determinations of the Hubble constant, which
gives the length scale of the Universe by relating the expansion velocity of
objects to their distance. There are two broad categories of measurements. The
first uses individual astrophysical objects which have some property that
allows their intrinsic luminosity or size to be determined, or allows the
determination of their distance by geometric means. The second category
comprises the use of all-sky cosmic microwave background, or correlations
between large samples of galaxies, to determine information about the geometry
of the Universe and hence the Hubble constant, typically in a combination with
other cosmological parameters. Many, but not all, object-based measurements
give  values of around 72-74km/s/Mpc , with typical errors of 2-3km/s/Mpc.
This is in mild discrepancy with CMB-based measurements, in particular those
from the Planck satellite, which give values of 67-68km/s/Mpc and typical
errors of 1-2km/s/Mpc. The size of the remaining systematics indicate that
accuracy rather than precision is the remaining problem in a good determination
of the Hubble constant. Whether a discrepancy exists, and whether new physics
is needed to resolve it, depends on details of the systematics of the
object-based methods, and also on the assumptions about other cosmological
parameters and which datasets are combined in the case of the all-sky methods.Comment: Extensively revised and updated since the 2007 version: accepted by
  Living Reviews in Relativity as a major (2014) update of LRR 10, 4, 200
Criterios de predicción de inestabilidades plásticas en procesos de conformado en caliente. (Parte I: Revisión teórica)
Myoferlin Depletion in Breast Cancer Cells Promotes Mesenchymal to Epithelial Shape Change and Stalls Invasion
Myoferlin (MYOF) is a mammalian ferlin protein with homology to ancestral Fer-1, a nematode protein that regulates spermatic membrane fusion, which underlies the amoeboid-like movements of its sperm. Studies in muscle and endothelial cells have reported on the role of myoferlin in membrane repair, endocytosis, myoblast fusion, and the proper expression of various plasma membrane receptors. In this study, using an in vitro human breast cancer cell model, we demonstrate that myoferlin is abundantly expressed in invasive breast tumor cells. Depletion of MYOF using lentiviral-driven shRNA expression revealed that MDA-MB-231 cells reverted to an epithelial morphology, suggesting at least some features of mesenchymal to epithelial transition (MET). These observations were confirmed by the down-regulation of some mesenchymal cell markers (e.g., fibronectin and vimentin) and coordinate up-regulation of the E-cadherin epithelial marker. Cell invasion assays using Boyden chambers showed that loss of MYOF led to a significant diminution in invasion through Matrigel or type I collagen, while cell migration was unaffected. PCR array and screening of serum-free culture supernatants from shRNAMYOF transduced MDA-MB-231 cells indicated a significant reduction in the steady-state levels of several matrix metalloproteinases. These data when considered in toto suggest a novel role of MYOF in breast tumor cell invasion and a potential reversion to an epithelial phenotype upon loss of MYOF
Nucleation of grain boundary cavities under the combined influence of helium and applied stress
The mathematics of Arthur Cayley with particular reference to linear algebra
SIGLEAvailable from British Library Document Supply Centre- DSC:DX173952 / BLDSC - British Library Document Supply CentreGBUnited Kingdo
- …
