26 research outputs found

    Palladium nanoparticles supported on fluorine-doped tin oxide as an efficient heterogeneous catalyst for Suzuki coupling and 4-nitrophenol reduction

    Get PDF
    Immobilization of palladium nanoparticles onto the fluorine-doped tin oxide (FTO) as support Pd/FTO, resulted in a highly active heterogeneous catalyst for Suzuki-Miyaura cross-coupling reactions and 4-nitrophenol reduction. The Pd/FTO catalyst has been synthesized by immobilization of palladium nanoparticles onto FTO via a simple impregnation method. ICP-MS analysis confirmed that there is 0.11 mmol/g of palladium was loaded successfully on FTO support. The crystallinity, morphologies, compositions and surface properties of Pd/FTO were fully characterized by various techniques. It was further examined for its catalytic activity and robustness in Suzuki coupling reaction with different aryl halides and solvents. The yields obtained from Suzuki coupling reactions were basically over 80%. The prepared catalyst was also tested on mild reaction such as reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP). Pd/FTO catalyst exhibited high catalytic activity towards 4-NP reduction with a rate constant of 1.776 min(-1) and turnover frequency (TOF) value of 29.1 hr(-1). The findings revealed that Pd/FTO also maintained its high stability for five consecutive runs in Suzuki reactions and 4-NP reductions. The catalyst showed excellent catalytic activities by using a small amount of Pd/FTO for the Suzuki coupling reaction and 4-NP reduction

    Circulating Pneumolysin Is a Potent Inducer of Cardiac Injury during Pneumococcal Infection

    Get PDF
    Streptococcus pneumoniae accounts for more deaths worldwide than any other single pathogen through diverse disease manifestations including pneumonia, sepsis and meningitis. Life-threatening acute cardiac complications are more common in pneumococcal infection compared to other bacterial infections. Distinctively, these arise despite effective antibiotic therapy. Here, we describe a novel mechanism of myocardial injury, which is triggered and sustained by circulating pneumolysin (PLY). Using a mouse model of invasive pneumococcal disease (IPD), we demonstrate that wild type PLY-expressing pneumococci but not PLY-deficient mutants induced elevation of circulating cardiac troponins (cTns), well-recognized biomarkers of cardiac injury. Furthermore, elevated cTn levels linearly correlated with pneumococcal blood counts (r=0.688, p=0.001) and levels were significantly higher in non-surviving than in surviving mice. These cTn levels were significantly reduced by administration of PLY-sequestering liposomes. Intravenous injection of purified PLY, but not a non-pore forming mutant (PdB), induced substantial increase in cardiac troponins to suggest that the pore-forming activity of circulating PLY is essential for myocardial injury in vivo. Purified PLY and PLY-expressing pneumococci also caused myocardial inflammatory changes but apoptosis was not detected. Exposure of cultured cardiomyocytes to PLY-expressing pneumococci caused dose-dependent cardiomyocyte contractile dysfunction and death, which was exacerbated by further PLY release following antibiotic treatment. We found that high PLY doses induced extensive cardiomyocyte lysis, but more interestingly, sub-lytic PLY concentrations triggered profound calcium influx and overload with subsequent membrane depolarization and progressive reduction in intracellular calcium transient amplitude, a key determinant of contractile force. This was coupled to activation of signalling pathways commonly associated with cardiac dysfunction in clinical and experimental sepsis and ultimately resulted in depressed cardiomyocyte contractile performance along with rhythm disturbance. Our study proposes a detailed molecular mechanism of pneumococcal toxin-induced cardiac injury and highlights the major translational potential of targeting circulating PLY to protect against cardiac complications during pneumococcal infections

    Влияние фосфатных связующих на физико-механические свойства периклазохромитовых огнеупоров

    Get PDF
    У данній статті наведено та порівняно фізико-механічні властивості периклазо-хромітових матеріалів в залежності від різних типів фосфатних зв’язуючих та введення різних домішок. Визначено, що найбільш раціональним є введення триполіфосфату натрію.In given clause are resulted and the physycal-mechanical properties periclase-cgromite of materials are compared depending on different of types phosphate binding and introduction of the various additives. Is determined, that most rational is the introduction treepolyphosphate sodume
    corecore