29,135 research outputs found

    An optimization-based "phase field" model for polycrystalline ferroelectrics

    Get PDF
    An optimization-based computational model is proposed to study domain evolution in polycrystalline ferroelectrics composed of numerous grains, each of which consists of multiple domains. Domain switching is realized by an optimization process to minimize the free energy of each grain. Similar to phase field modeling, no priori domain-switching criterion is imposed in the proposed model. Moreover, by focusing on the volume fractions of domains only, the computational complexity of this model becomes much smaller and the domain textures evolution can be captured. Simulation results on both tetragonal and rhombohedral lead titanate zirconate ceramics illustrate the efficiency of this model. © 2010 American Institute of Physics.published_or_final_versio

    Editorial

    Get PDF
    link_to_subscribed_fulltex

    Fermentable sugars and microbial inhibitors formation from two-stage pretreatment of corn stalk with variation in particle size and severity factor

    Get PDF
    Microbial inhibitors including weak acids, furan derivatives and phenolic compounds are key problems of cellulosic bio-fuels production by fermentation. Most of these inhibitors are sugars and lignin degradation compounds, which are almost unavoidable during pretreatment processes. While, most of the one stage pretreatment has been conducted at high severity factors of 3.5 or more to get high sugar yield, with increase in severity factor, high concentration of microbial inhibitors were formed and significantly affected downstream biofuel yield. Thus, a two-stage pretreatment of corn stalk, hydrothermal followed by oxalic acid, under low severity factor and its enzymatic degradability was investigated in this study to identify fermentable sugar production and corresponding microbial inhibitors formation. Additionally, effect of equivalent severity factors of 2 to 3.5 and particle sizes of 1 to 35 mm were also studied systematically. Particle size of 15 mm was found as an optimum size at an equivalent severity factor of 2.5. Sugars 61.99 ± 0.03 g and inhibitors 5.12 ± 0.01 g from 100 g of corn stalk were obtained at the optimum particle size and pretreatment condition. The highest glucan conversion and recovery at the optimum conditions were 92.95± 0.08 and 78.42± 0.07%, respectively. Overall, the two-stage pretreatment process with the larger particle size and low equivalent severity factor could be an alternative to reduce microbial inhibitors formation and excessive biomass processing cost.Key words: Bio-fuel, corn stalk, pretreatment, particle size, microbial inhibitors, fermentable sugars

    Interaction of O vacancies and domain structures in single crystal BaTi O3: Two-dimensional ferroelectric model

    Get PDF
    Two-dimensional simulations on the interactions of oxygen vacancies and different domain structures in barium titanate single crystal were carried out using the phase field method. The evolution of the spontaneous polarizations and oxygen vacancies was coupled through Maxwell's equation. The results showed that two barriers near the electrodes existed in both the 90°and 180°domain structures. It has also been observed that while an intrinsic electrostatic potential drop across the 90°domain wall created the electric fields which drove the electrons and oxygen vacancies aggregate on the different sides of the domain wall, the 180°domain wall had insignificant interaction with the potential, and no electron or vacancy accumulation in 180°domain structure was observed. Polarization charge density is believed to be the origin of this difference. © 2008 The American Physical Society.published_or_final_versio

    Inhibitory Effect of a French Maritime Pine Bark Extract-Based Nutritional Supplement on TNF-α-Induced Inflammation and Oxidative Stress in Human Coronary Artery Endothelial Cells

    Get PDF
    © 2015 Kristine C. Y. McGrath et al. Oxidative stress and inflammation, leading to endothelial dysfunction, contribute to the pathogenesis of atherosclerosis. The popularity of natural product supplements has increased in recent years, especially those with purported anti-inflammatory and/or antioxidant effects. The efficacy and mechanism of many of these products are not yet well understood. In this study, we tested the antioxidant and anti-inflammatory effects of a supplement, HIPER Health Supplement (HIPER), on cytokine-induced inflammation and oxidative stress in human coronary artery endothelial cells (HCAECs). HIPER is a mixture of French maritime pine bark extract (PBE), honey, aloe vera, and papaya extract. Treatment for 24 hours with HIPER reduced TNF-α-induced reactive oxygen species (ROS) generation that was associated with decreased NADPH oxidase 4 and increased superoxide dismutase-1 expression. HIPER inhibited TNF-α induced monocyte adhesion to HCAECs that was in keeping with decreased expression of vascular cell adhesion molecule-1 and intercellular cell adhesion molecule-1 and decreased nuclear factor-kappa B (NF-B) activation. Further investigation of mechanism showed HIPER reduced TNF-α induced IBα and p38 and MEK1/2 MAP kinases phosphorylation. Our findings show that HIPER has potent inhibitory effects on HCAECs inflammatory and oxidative stress responses that may protect against endothelial dysfunction that underlies early atherosclerotic lesion formation

    Apolipoprotein-AI mimetic peptides D-4F and L-5F decrease hepatic inflammation and increase insulin sensitivity in C57BL/6 mice.

    Full text link
    BACKGROUND:Apolipoprotein-AI (apo-AI) is the major apolipoprotein found in high density lipoprotein particles (HDLs). We previously demonstrated that apo-AI injected directly into high-fat diet fed mice improved insulin sensitivity associated with decreased hepatic inflammation. While our data provides compelling proof of concept, apoA-I mimetic peptides are more clinically feasible. The aim of this study was to test whether apo-AI mimetic peptide (D-4F and L-5F) treatment will emulate the effects of full-length apo-AI to improve insulin sensitivity. METHODS:Male C57BL/6 mice were fed a high-fat diet for 16 weeks before receiving D4F mimetic peptide administered via drinking water or L5F mimetic peptide administered by intraperitoneal injection bi-weekly for a total of five weeks. Glucose tolerance and insulin tolerance tests were conducted to assess the effects of the peptides on insulin resistance. Effects of the peptides on inflammation, gluconeogenic enzymes and lipid synthesis were assessed by real-time PCR of key markers involved in the respective pathways. RESULTS:Treatment with apo-AI mimetic peptides D-4F and L-5F showed: (i) improved blood glucose clearance (D-4F 1.40-fold AUC decrease compared to HFD, P<0.05; L-4F 1.17-fold AUC decrease compared to HFD, ns) in the glucose tolerance test; (ii) improved insulin tolerance (D-4F 1.63-fold AUC decrease compared to HFD, P<0.05; L-5F 1.39-fold AUC compared to HFD, P<0.05) in the insulin tolerance test. The metabolic test results were associated with (i) decreased hepatic inflammation of SAA1, IL-1β IFN-γ and TNFα (2.61-5.97-fold decrease compared to HFD, P<0.05) for both mimetics; (ii) suppression of hepatic mRNA expression of gluconeogenesis-associated genes (PEPCK and G6Pase; 1.66-3.01-fold decrease compared to HFD, P<0.001) for both mimetics; (iii) lipogenic-associated genes, (SREBP1c and ChREBP; 2.15-3.31-fold decrease compared to HFD, P<0.001) for both mimetics and; (iv) reduced hepatic macrophage infiltration (F4/80 and CD68; 1.77-2.15-fold compared to HFD, P<0.001) for both mimetics. CONCLUSION:Apo-AI mimetic peptides treatment led to improved glucose homeostasis. This effect is associated with reduced expression of inflammatory markers in the liver and reduced infiltration of macrophages, suggesting an overall suppression of hepatic inflammation. We also showed altered expression of genes associated with gluconeogenesis and lipid synthesis, suggesting that glucose and lipid synthesis is suppressed. These findings suggest that apoA-I mimetic peptides could be a new therapeutic option to reduce hepatic inflammation that contributes to the development of overnutrition-induced insulin resistance

    NSGA-II-trained neural network approach to the estimation of prediction intervals of scale deposition rate in oil & gas equipment

    No full text
    International audienceScale deposition can damage equipment in the oil & gas production industry. Hence, the reliable and accurate prediction of the scale deposition rate is critical for production availability. In this study, we consider the problem of predicting the scale deposition rate, providing an indication of the associated prediction uncertainty. We tackle the problem using an empirical modeling approach, based on experimental data. Specifically, we implement a multi-objective genetic algorithm (namely, non-dominated sorting genetic algorithm-II (NSGA-II)) to train a neural network (NN) (i.e. to find its parameters, that is its weights and biases) to provide the prediction intervals (PIs) of the scale deposition rate. The PIs are optimized both in terms of accuracy (coverage probability) and dimension (width). We perform k-fold cross-validation to guide the choice of the NN structure (i.e. the number of hidden neurons). We use hypervolume indicator metric to evaluate the Pareto fronts in the validation step. A case study is considered, with regards to a set of experimental observations: the NSGA-II-trained neural network is shown capable of providing PIs with both high coverage and small width

    A comprehensive study of the open cluster NGC 6866

    Full text link
    We present CCD UBVRIUBVRI photometry of the field of the open cluster NGC 6866. Structural parameters of the cluster are determined utilizing the stellar density profile of the stars in the field. We calculate the probabilities of the stars being a physical member of the cluster using their astrometric data and perform further analyses using only the most probable members. The reddening and metallicity of the cluster were determined by independent methods. The LAMOST spectra and the ultraviolet excess of the F and G type main-sequence stars in the cluster indicate that the metallicity of the cluster is about the solar value. We estimated the reddening E(BV)=0.074±0.050E(B-V)=0.074 \pm 0.050 mag using the UBU-B vs BVB-V two-colour diagram. The distance modula, the distance and the age of NGC 6866 were derived as μ=10.60±0.10\mu = 10.60 \pm 0.10 mag, d=1189±75d=1189 \pm 75 pc and t=813±50t = 813 \pm 50 Myr, respectively, by fitting colour-magnitude diagrams of the cluster with the PARSEC isochrones. The Galactic orbit of NGC 6866 indicates that the cluster is orbiting in a slightly eccentric orbit with e=0.12e=0.12. The mass function slope x=1.35±0.08x=1.35 \pm 0.08 was derived by using the most probable members of the cluster.Comment: 14 pages, including 16 figures and 7 tables, accepted for publication in MNRAS. Table 4 in the manuscript will be published electronicall

    Attenuation of proinflammatory responses by S -[6]-Gingerol via inhibition of ROS/NF-Kappa B/COX2 activation in HuH7 cells

    Get PDF
    Introduction. Hepatic inflammation underlies the pathogenesis of chronic diseases such as insulin resistance and type 2 diabetes mellitus. S-[6]-Gingerol has been shown to have anti-inflammatory properties. Important inflammatory mediators of interleukins include nuclear factor B (NFB) and cyclooxygenase 2 (COX2). We now explore the mechanism of anti-inflammatory effects of S-[6]-gingerol in liver cells. Methods. HuH7 cells were stimulated with IL1β to establish an in vitro hepatic inflammatory model. Results. S-[6]-Gingerol attenuated IL1β-induced inflammation and oxidative stress in HuH7 cells, as evidenced by decreasing mRNA levels of inflammatory factor IL6, IL8, and SAA1, suppression of ROS generation, and increasing mRNA levels of DHCR24. In addition, S-[6]-gingerol reduced IL1β-induced COX2 upregulation as well as NFB activity. Similar to the protective effects of S-[6]-gingerol, both NS-398 (a selective COX2 inhibitor) and PDTC (a selective NFB inhibitor) suppressed mRNA levels of IL6, IL8, and SAA1. Importantly, PDTC attenuated IL1β-induced overexpression of COX2. Of particular note, the protective effect of S-[6]-gingerol against the IL1β-induced inflammatory response was similar to that of BHT, an ROS scavenger. Conclusions. The findings of this study demonstrate that S-[6]-gingerol protects HuH7 cells against IL1β-induced inflammatory insults through inhibition of the ROS/NFB/COX2 pathway. © 2013 Xiao-Hong Li et al
    corecore