390 research outputs found
Risk of death in the long QT syndrome when a sibling has died
BACKGROUND:
Sudden death of a sibling is thought to be associated with greater risk of death in long QT syndrome (LQTS). However, there is no evidence of such an association.
OBJECTIVE:
This study sought to test the hypothesis that sudden death of a sibling is a risk factor for death or aborted cardiac arrest (ACA) in patients with LQTS.
METHODS:
We examined all probands and first-degree and second-degree relatives in the International Long QT Registry from birth to age 40 years with QTc >/= 0.45 s. Covariates included sibling death, QTc, gender by age, syncope, and implantable cardioverter-defibrillator (ICD) and beta-blocker treatment. End points were (1) severe events (ACA, LQTS-related death) and (2) any cardiac event (syncope, ACA, or LQTS-related death).
RESULTS:
Of 1915 subjects, 270 had a sibling who died. There were 213 severe events and 829 total cardiac events. More subjects with history of sibling death received beta-blocker therapy. Sibling death was not significantly associated with risk of ACA or LQTS-related death, but was associated with increased risk of syncope. QTc >/= 0.53 s (hazard ratio 2.5, P <.01), history of syncope (hazard ratio 6.1, P <.01), and gender were strongly associated with risk of ACA or LQTS-related death.
CONCLUSION:
Sudden death of a sibling prompted more aggressive treatment but did not predict risk of death or ACA, whereas QTc >/= 0.53 s, gender, and syncope predicted this risk. All subjects should receive appropriate beta-blocker therapy. The decision to implant an ICD should be based on an individual's own risk characteristics (QTc, gender, and history of syncope)
Single-cell analysis tools for drug discovery and development
The genetic, functional or compositional heterogeneity of healthy and diseased tissues presents major challenges in drug discovery and development. Such heterogeneity hinders the design of accurate disease models and can confound the interpretation of biomarker levels and of patient responses to specific therapies. The complex nature of virtually all tissues has motivated the development of tools for single-cell genomic, transcriptomic and multiplex proteomic analyses. Here, we review these tools and assess their advantages and limitations. Emerging applications of single cell analysis tools in drug discovery and development, particularly in the field of oncology, are discussed
Spectrum of ST-T-wave patterns and repolarization parameters in congenital long-QT syndrome: ECG findings identify genotypes
Inhibition of carcinogen induced c-Ha-ras and c-fos proto-oncogenes expression by dietary curcumin
BACKGROUND: We investigated the chemopreventive action of dietary curcumin on 7,12-dimethylbenz(a)anthracene (DMBA)-initiated and 12,0-tetradecanoylphorbol-13-acetate (TPA)-promoted skin tumor formation in Swiss albino mice. Curcumin, a yellow coloring matter isolated from roots of Curcuma longa Linn, is a phenolic compound possessing antioxidant, free radical scavenger, and antiinflammatory properties. It has been shown by previously reported work that TPA-induced skin tumors were inhibited by topical application of curcumin, and curcumin has been shown to inhibit a variety of biological activities of TPA. Topical application of curcumin was reported to inhibit TPA-induced c-fos, c-jun and c-myc gene expression in mouse skin. This paper reports the effects of orally administered curcumin, which was consumed as a dietary component at concentrations of 0.2 % or 1 %, in ad libitum feeding. RESULTS: Animals in which tumors had been initiated with DMBA and promoted with TPA experienced significantly fewer tumors and less tumor volume if they ingested either 0.2% or 1% curcumin diets. Also, the dietary consumption of curcumin resulted in a significantly decreased expression of ras and fos proto-oncogenes in the tumorous skin, as measured by enhanced chemiluminesence Western blotting detection system (Amersham). CONCLUSIONS: Whereas earlier work demonstrated that topical application of curcumin to mouse skin inhibited TPA-induced expression of c-fos, c-jun and c-myc oncogenes, our results are the first to show that orally consumed curcumin significantly inhibited DMBA- and TPA-induced ras and fos gene expression in mouse skin
High expression of gabarapl1 is associated with a better outcome for patients with lymph node-positive breast cancer
International audienceBACKGROUND: This study evaluates the relation of the early oestrogen-regulated gene gabarapl1 to cellular growth and its prognostic significance in breast adenocarcinoma. METHODS: First, the relation between GABARAPL1 expression and MCF-7 growth rate was analysed. Thereafter, by performing macroarray and reverse transcriptase quantitative-polymerase chain reaction (RT-qPCR) experiments, gabarapl1 expression was quantified in several histological breast tumour types and in a retrospective cohort of 265 breast cancers. RESULTS: GABARAPL1 overexpression inhibited MCF-7 growth rate and gabarapl1 expression was downregulated in breast tumours. Gabarapl1 mRNA levels were found to be significantly lower in tumours presenting a high histological grade, with a lymph node-positive (pN+) and oestrogen and/or progesterone receptor-negative status. In univariate analysis, high gabarapl1 levels were associated with a lower risk of metastasis in all patients (hazard ratio (HR) 4.96), as well as in pN+ patients (HR 14.96). In multivariate analysis, gabarapl1 expression remained significant in all patients (HR 3.63), as well as in pN+ patients (HR 5.65). In univariate or multivariate analysis, gabarapl1 expression did not disclose any difference in metastasis risk in lymph node-negative patients. CONCLUSIONS: Our data show for the first time that the level of gabarapl1 mRNA expression in breast tumours is a good indicator of the risk of recurrence, specifically in pN+ patients
Inhibition of PbGP43 expression may suggest that gp43 is a virulence factor in Paracoccidioides brasiliensis
ABSTARCT: Glycoprotein gp43 is an immunodominant diagnostic antigen for paracoccidioidomycosis caused by Paracoccidioides brasiliensis. It is abundantly secreted in isolates such as Pb339. It is structurally related to beta-1,3-exoglucanases, however inactive. Its function in fungal biology is unknown, but it elicits humoral, innate and protective cellular immune responses; it binds to extracellular matrix-associated proteins. In this study we applied an antisense RNA (aRNA) technology and Agrobacterium tumefaciens-mediated transformation to generate mitotically stable PbGP43 mutants (PbGP43 aRNA) derived from wild type Pb339 to study its role in P. brasiliensis biology and during infection. Control PbEV was transformed with empty vector. Growth curve, cell vitality and morphology of PbGP43 aRNA mutants were indistinguishable from those of controls. PbGP43 expression was reduced 80-85% in mutants 1 and 2, as determined by real time PCR, correlating with a massive decrease in gp43 expression. This was shown by immunoblotting of culture supernatants revealed with anti-gp43 mouse monoclonal and rabbit polyclonal antibodies, and also by affinity-ligand assays of extracellular molecules with laminin and fibronectin. In vitro, there was significantly increased TNF-α production and reduced yeast recovery when PbGP43 aRNA1 was exposed to IFN-γ-stimulated macrophages, suggesting reduced binding/uptake and/or increased killing. In vivo, fungal burden in lungs of BALB/c mice infected with silenced mutant was negligible and associated with decreased lung ΙΛ-10 and IL-6. Therefore, our results correlated low gp43 expression with lower pathogenicity in mice, but that will be definitely proven when PbGP43 knockouts become available.
GalNAc glycoprotein expression by breast cell lines, primary breast cancer and normal breast epithelial membrane
Over-expression of N-acetylgalactosamine glycoproteins as detected by binding of the lectin from Helix pomatia (HPA), is associated with metastatic competence and poor patient prognosis in a range of human adenocarcinomas. These glycoproteins remain poorly characterised, and their functional role has yet to be elucidated. This study describes characterisation of a range of human breast/breast cancer cell lines for the expression of the N-acetylgalactosaminylated glycoproteins of interest, and their comparison with normal breast epithelium and a range of clinical breast carcinoma samples. Confocal and light microscopy studies revealed cytochemical HPA-binding patterns consistent with a fundamental disruption in normal glycobiosynthetic pathways attending increasing metastatic potential. We report the most complete comparative analysis of HPA-binding ligands from cultured breast cells, clinical breast carcinoma samples and normal breast epithelium to date. Lectin blotting identified 11 major HPA-binding glycoprotein bands common to both clinical tumour samples and breast cell lines and 6 of these bands were also expressed by samples of normal breast epithelium, albeit at much lower levels. Moreover, very marked quantitative but not qualitative differences in levels of expression consistent with metastatic capability were noted. © 2001 Cancer Research Campaignhttp://www.bjcancer.co
Identification of two novel CT antigens and their capacity to elicit antibody response in hepatocellular carcinoma patients
FATE and TPTE genes were originally reported to be specifically expressed in the adult testis. We searched for the databases of Unigene and serial analysis of gene expression ( SAGE) implying that these two gene transcripts might also be expressed in tumours. Herein, we demonstrated that FATE and TPTE mRNA transcripts were expressed in different histological types of tumours and normal testis. Both are cancer-testis (CT) antigens and renamed as FATE/BJ-HCC-2 and TPTE/BJ-HCC-5, respectively. Comparison at nucleotide sequence, the FATE/BJ-HCC-2 cDNA, was identical to that of FATE, whereas the TPTE/BJ-HCC-5 was found to have two isoforms in both cancers and testis: one was identical in cDNA sequence to TPTE, encoding a protein of 551 amino acids, and the other variant lacked an exon of 54 bp, encoding a protein of 533 amino acids. The mRNA expression was analysed by RT-PCR and real-time PCR. FATE/BJ-HCC-2 mRNA was detected in 66% ( 41 out of 62) in hepatocellular carcinoma (HCC) samples and 21% ( three out of 14) in colon cancer samples, whereas the TPTE/BJ-HCC-5 mRNA was detected in 39% ( 24 out of 62) and 36% ( five out of 14) in HCC and non-small lung cancer samples, respectively. The recombinant proteins were prepared and the reactivity of allogenic sera to these two antigens was screened. The frequency of antibody response against FATE/BJ-HCC-2 and TPTE/BJ-HCC-5 proteins was 7.3% ( three out of 41) and 25.0% ( six out of 24), respectively, in HCC patients bearing respective gene transcripts. Therefore, FATE/BJ-HCC-2 and TPTE/BJ-HCC-5 are the novel CT antigens capable of eliciting antibody response in cancer patients.OncologySCI(E)PubMed22ARTICLE2291-2978
Emergence of Xin Demarcates a Key Innovation in Heart Evolution
The mouse Xin repeat-containing proteins (mXinα and mXinβ) localize to the intercalated disc in the heart. mXinα is able to bundle actin filaments and to interact with β-catenin, suggesting a role in linking the actin cytoskeleton to N-cadherin/β-catenin adhesion. mXinα-null mouse hearts display progressively ultrastructural alterations at the intercalated discs, and develop cardiac hypertrophy and cardiomyopathy with conduction defects. The up-regulation of mXinβ in mXinα-deficient mice suggests a partial compensation for the loss of mXinα. To elucidate the evolutionary relationship between these proteins and to identify the origin of Xin, a phylogenetic analysis was done with 40 vertebrate Xins. Our results show that the ancestral Xin originated prior to the emergence of lamprey and subsequently underwent gene duplication early in the vertebrate lineage. A subsequent teleost-specific genome duplication resulted in most teleosts encoding at least three genes. All Xins contain a highly conserved β-catenin-binding domain within the Xin repeat region. Similar to mouse Xins, chicken, frog and zebrafish Xins also co-localized with β-catenin to structures that appear to be the intercalated disc. A putative DNA-binding domain in the N-terminus of all Xins is strongly conserved, whereas the previously characterized Mena/VASP-binding domain is a derived trait found only in Xinαs from placental mammals. In the C-terminus, Xinαs and Xinβs are more divergent relative to each other but each isoform from mammals shows a high degree of within-isoform sequence identity. This suggests different but conserved functions for mammalian Xinα and Xinβ. Interestingly, the origin of Xin ca. 550 million years ago coincides with the genesis of heart chambers with complete endothelial and myocardial layers. We postulate that the emergence of the Xin paralogs and their functional differentiation may have played a key role in the evolutionary development of the heart
Biochemical and Molecular Mechanisms of Folate Transport in Rat Pancreas; Interference with Ethanol Ingestion
Folic acid is an essential nutrient that is required for one-carbon biosynthetic processes and for methylation of biomolecules. Deficiency of this micronutrient leads to disturbances in normal physiology of cell. Chronic alcoholism is well known to be associated with folate deficiency which is due, in part to folate malabsorption. The present study deals with the mechanistic insights of reduced folate absorption in pancreas during chronic alcoholism. Male Wistar rats were fed 1 g/kg body weight/day ethanol (20% solution) orally for 3 months and the mechanisms of alcohol associated reduced folate uptake was studied in pancreas. The folate transport system in the pancreatic plasma membrane (PPM) was found to be acidic pH dependent one. The transporters proton coupled folate transporter (PCFT) and reduced folate carrier (RFC) are involved in folate uptake across PPM. The folate transporters were found to be associated with lipid raft microdomain of the PPM. Ethanol ingestion decreased the folate transport by reducing the levels of folate transporter molecules in lipid rafts at the PPM. The decreased transport efficiency of the PPM was reflected as reduced folate levels in pancreas. The chronic ethanol ingestion led to decreased pancreatic folate uptake. The decreased levels of PCFT and RFC expression in rat PPM were due to decreased association of these proteins with lipid rafts (LR) at the PPM
- …
