40 research outputs found

    Antioxidant Activity of the Phenolic Leaf Extracts from Monechma ciliatum in Stabilization of Corn Oil

    Get PDF
    The total phenolic content and the antioxidan potential of methanolic extract (ME), ethyl acetate extract (EAE), and hexane extract (HE) from Monechma ciliatum leaves (MCL) were evaluated. The Folin-Ciocalteu, b-carotene bleaching, the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging and the accelerated oxidation methods were used for evaluation. Both the extraction yield and the antioxidant activity (AOA) were strongly dependent on the solvent. Among the extracts, ME exhibited highest total phenolic compounds (TPC) and IC50 values for DPPH, followed by EAE and HE, respectively. Peroxide value (PV), anisidine value (AV) conjugated dienes (CD), and thiobarbituric acid reactive substances (TBARS) were taken as the parameters for evaluation of stabilization efficacy of MCL extracts and results revealed MCL to be a potent antioxidant for the stabilization of corn oil. As a general trend, increased AOA was observed for increased extract concentration. The predominant phenolic compounds identified by HPLC-DAD in MCL extracts were p-coumaric acid, vanillin and ferulic acid

    Antioxidant Activity of the Phenolic Leaf Extracts from Monechma ciliatum in Stabilization of Corn Oil

    Get PDF
    The total phenolic content and the antioxidan potential of methanolic extract (ME), ethyl acetate extract (EAE), and hexane extract (HE) from Monechma ciliatum leaves (MCL) were evaluated. The Folin-Ciocalteu, b-carotene bleaching, the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging and the accelerated oxidation methods were used for evaluation. Both the extraction yield and the antioxidant activity (AOA) were strongly dependent on the solvent. Among the extracts, ME exhibited highest total phenolic compounds (TPC) and IC50 values for DPPH, followed by EAE and HE, respectively. Peroxide value (PV), anisidine value (AV) conjugated dienes (CD), and thiobarbituric acid reactive substances (TBARS) were taken as the parameters for evaluation of stabilization efficacy of MCL extracts and results revealed MCL to be a potent antioxidant for the stabilization of corn oil. As a general trend, increased AOA was observed for increased extract concentration. The predominant phenolic compounds identified by HPLC-DAD in MCL extracts were p-coumaric acid, vanillin and ferulic acid

    HPV16 E7-Dependent Transformation Activates NHE1 through a PKA-RhoA-Iinduced Inhibition of p38alpha

    Get PDF
    Background: Neoplastic transformation originates from a large number of different genetic alterations. Despite this genetic variability, a common phenotype to transformed cells is cellular alkalinization. We have previously shown in human keratinocytes and a cell line in which transformation can be turned on and followed by the inducible expression of the E7 oncogene of human papillomavirus type 16 (HPV16), that intracellular alkalinization is an early and essential physiological event driven by the up-regulation of the Na/H-+(+) exchanger isoform 1 (NHE1) and is necessary for the development of other transformed phenotypes and the in vivo tumor formation in nude mice.Methodology: Here, we utilize these model systems to elucidate the dynamic sequence of alterations of the upstream signal transduction systems leading to the transformation-dependent activation of NHE1.Principal Findings: We observe that a down-regulation of p38 MAPK activity is a fundamental step in the ability of the oncogene to transform the cell. Further, using pharmacological agents and transient transfections with dominant interfering, constitutively active, phosphorylation negative mutants and siRNA strategy to modify specific upstream signal transduction components that link HPV16 E7 oncogenic signals to up-regulation of the NHE1, we demonstrate that the stimulation of NHE1 activity is driven by an early rise in cellular cAMP resulting in the down-stream inhibition of p38 MAPK via the PKA-dependent phosphorylation of the small G-protein, RhoA, and its subsequent inhibition.Conclusions: All together these data significantly improve our knowledge concerning the basic cellular alterations involved in oncogene-driven neoplastic transformation

    Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk.

    Get PDF
    Blood pressure is a heritable trait influenced by several biological pathways and responsive to environmental stimuli. Over one billion people worldwide have hypertension (≥140 mm Hg systolic blood pressure or  ≥90 mm Hg diastolic blood pressure). Even small increments in blood pressure are associated with an increased risk of cardiovascular events. This genome-wide association study of systolic and diastolic blood pressure, which used a multi-stage design in 200,000 individuals of European descent, identified sixteen novel loci: six of these loci contain genes previously known or suspected to regulate blood pressure (GUCY1A3-GUCY1B3, NPR3-C5orf23, ADM, FURIN-FES, GOSR2, GNAS-EDN3); the other ten provide new clues to blood pressure physiology. A genetic risk score based on 29 genome-wide significant variants was associated with hypertension, left ventricular wall thickness, stroke and coronary artery disease, but not kidney disease or kidney function. We also observed associations with blood pressure in East Asian, South Asian and African ancestry individuals. Our findings provide new insights into the genetics and biology of blood pressure, and suggest potential novel therapeutic pathways for cardiovascular disease prevention
    corecore