117 research outputs found

    The Na(+)–H(+ )exchanger-1 induces cytoskeletal changes involving reciprocal RhoA and Rac1 signaling, resulting in motility and invasion in MDA-MB-435 cells

    Get PDF
    INTRODUCTION: An increasing body of evidence shows that the tumour microenvironment is essential in driving neoplastic progression. The low serum component of this microenvironment stimulates motility/invasion in human breast cancer cells via activation of the Na(+)–H(+ )exchanger (NHE) isoform 1, but the signal transduction systems that underlie this process are still poorly understood. We undertook the present study to elucidate the role and pattern of regulation by the Rho GTPases of this serum deprivation-dependent activation of both NHE1 and subsequent invasive characteristics, such as pseudopodia and invadiopodia protrusion, directed cell motility and penetration of normal tissues. METHODS: The present study was performed in a well characterized human mammary epithelial cell line representing late stage metastatic progression, MDA-MB-435. The activity of RhoA and Rac1 was modified using their dominant negative and constitutively active mutants and the activity of NHE1, cell motility/invasion, F-actin content and cell shape were measured. RESULTS: We show for the first time that serum deprivation induces NHE1-dependent morphological and cytoskeletal changes in metastatic cells via a reciprocal interaction of RhoA and Rac1, resulting in increased chemotaxis and invasion. Deprivation changed cell shape by reducing the amount of F-actin and inducing the formation of leading edge pseudopodia. Serum deprivation inhibited RhoA activity and stimulated Rac1 activity. Rac1 and RhoA were antagonistic regulators of both basal and stimulated tumour cell NHE1 activity. The regulation of NHE1 activity by RhoA and Rac1 in both conditions was mediated by an alteration in intracellular proton affinity of the exchanger. Interestingly, the role of each of these G-proteins was reversed during serum deprivation; basal NHE1 activity was regulated positively by RhoA and negatively by Rac1, whereas RhoA negatively and Rac1 positively directed the stimulation of NHE1 during serum deprivation. Importantly, the same pattern of RhoA and Rac1 regulation found for NHE1 activity was observed in both basal and serum deprivation dependent increases in motility, invasion and actin cytoskeletal organization. CONCLUSION: Our findings suggest that the reported antagonistic roles of RhoA and Rac1 in cell motility/invasion and cytoskeletal organization may be due, in part, to their concerted action on NHE1 activity as a convergence point

    Biocatalytic Synthesis of Polymers of Precisely Defined Structures

    Get PDF
    The fabrication of functional nanoscale devices requires the construction of complex architectures at length scales characteristic of atoms and molecules. Currently microlithography and micro-machining of macroscopic objects are the preferred methods for construction of small devices, but these methods are limited to the micron scale. An intriguing approach to nanoscale fabrication involves the association of individual molecular components into the desired architectures by supramolecular assembly. This process requires the precise specification of intermolecular interactions, which in turn requires precise control of molecular structure

    Association of plasma microRNA expression with age, genetic background and functional traits in dairy cattle

    Get PDF
    Abstract A number of blood circulating microRNAs (miRNAs) are proven disease biomarkers and have been associated with ageing and longevity in multiple species. However, the role of circulating miRNAs in livestock species has not been fully studied. We hypothesise that plasma miRNA expression profiles are affected by age and genetic background, and associated with health and production traits in dairy cattle. Using PCR arrays, we assessed 306 plasma miRNAs for effects of age (calves vs mature cows) and genetic background (control vs select lines) in 18 animals. We identified miRNAs which were significantly affected by age (26 miRNAs) and genetic line (5 miRNAs). Using RT-qPCR in a larger cow population (n = 73) we successfully validated array data for 12 age-related miRNAs, one genetic line-related miRNA, and utilised expression data to associate their levels in circulation with functional traits in these animals. Plasma miRNA levels were associated with telomere length (ageing/longevity indicator), milk production and composition, milk somatic cell count (mastitis indicator), fertility, lameness, and blood metabolites linked with body energy balance and metabolic stress. In conclusion, circulating miRNAs could provide useful selection markers for dairy cows to help improve health, welfare and production performance

    The Influence of Reproductive Experience on Milk Energy Output and Lactation Performance in the Grey Seal (Halichoerus grypus)

    Get PDF
    Although evidence from domestic and laboratory species suggests that reproductive experience plays a critical role in the development of aspects of lactation performance, whether reproductive experience may have a significant influence on milk energy transfer to neonates in wild populations has not been directly investigated. We compared maternal energy expenditures and pup growth and energy deposition over the course of lactation between primiparous and fully-grown, multiparous grey seal (Halichoerus grypus) females to test whether reproductive experience has a significant influence on lactation performance. Although there was no difference between primiparous females in milk composition and, thus, milk energy content at either early or peak lactation primiparous females had a significantly lower daily milk energy output than multiparous females indicating a reduced physiological capacity for milk secretion

    A cohort study of in utero polychlorinated biphenyl (PCB) exposures in relation to secondary sex ratio

    Get PDF
    Abstract: Background: Polychlorinated biphenyls (PCBs) are ubiquitous industrial chemicals that persist in the environment and in human fatty tissue. PCBs are related to a class of compounds known as dioxins, specifically 2,3,7,8-TCDD (tetrachloro-dibenzodioxin), which has been implicated as a cause of altered sex ratio, especially in relation to paternal exposures. Methods: In the 1960's, serum specimens were collected from pregnant women participating in the Child Health and Development Study in the San Francisco Bay Area. The women were interviewed and their serum samples stored at -20°C. For this study, samples were thawed and a total of eleven PCBs were determined in 399 specimens. Secondary sex ratio, or sex ratio at birth, was evaluated as a function of maternal serum concentrations using log-binomial and logistic regression, controlling for hormonally active medications taken during pregnancy. Results: The relative risk of a male birth decreased by 33% comparing women at the 90th percentile of total PCBs with women at the 10th percentile (RR = 0.67; 95% CI, 0.48–0.94; p = 0.02), or by approximately 7% for each 1 μg/L increase in total PCB concentration. Although some congener-specific associations with sex ratio were only marginally statistically significant, all nine PCB congeners with < 30% of samples below the LOQ showed the same direction of association, an improbable finding under the null hypothesis. Conclusion: Maternal exposure to PCBs may be detrimental to the success of male sperm or to the survival of male embryos. Findings could be due to contaminants, metabolites or PCBs themselves

    Ataxin-3 Plays a Role in Mouse Myogenic Differentiation through Regulation of Integrin Subunit Levels

    Get PDF
    BACKGROUND: During myogenesis several transcription factors and regulators of protein synthesis and assembly are rapidly degraded by the ubiquitin-proteasome system (UPS). Given the potential role of the deubiquitinating enzyme (DUB) ataxin-3 in the UPS, and the high expression of the murine ataxin-3 homolog in muscle during embryogenesis, we sought to define its role in muscle differentiation. METHODOLOGY/PRINCIPAL FINDINGS: Using immunofluorescence analysis, we found murine ataxin-3 (mATX3) to be highly expressed in the differentiated myotome of E9.5 mouse embryos. C2C12 myoblasts depleted of mATX3 by RNA interference exhibited a round morphology, cell misalignment, and a delay in differentiation following myogenesis induction. Interestingly, these cells showed a down-regulation of alpha5 and alpha7 integrin subunit levels both by immunoblotting and immunofluorescence. Mouse ATX3 was found to interact with alpha5 integrin subunit and to stabilize this protein by repressing its degradation through the UPS. Proteomic analysis of mATX3-depleted C2C12 cells revealed alteration of the levels of several proteins related to integrin signaling. CONCLUSIONS: Ataxin-3 is important for myogenesis through regulation of integrin subunit levels.This work was financed by the Fundacao para a Ciencia e a Tecnologia (FCT) (POCI/SAU-MMO/60412/2002) and by National Institutes of Health/National Institute of Neurological Disorders and Stroke (NIH/NINDS) grant RO1 NS038712 to HLP. MCC, FB, AJR, and RJT were supported by the FCT fellowships (SFRH/BD/9759/2003 and SFRH/BPD/28560/2006), (SFRH/BPD/17368/2004), (SFRH/BD/17066/2004), (SFRH/BD/29947/2006), respectively. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    MicroRNA Predictors of Longevity in Caenorhabditis elegans

    Get PDF
    Neither genetic nor environmental factors fully account for variability in individual longevity: genetically identical invertebrates in homogenous environments often experience no less variability in lifespan than outbred human populations. Such variability is often assumed to result from stochasticity in damage accumulation over time; however, the identification of early-life gene expression states that predict future longevity would suggest that lifespan is least in part epigenetically determined. Such “biomarkers of aging,” genetic or otherwise, nevertheless remain rare. In this work, we sought early-life differences in organismal robustness in unperturbed individuals and examined the utility of microRNAs, known regulators of lifespan, development, and robustness, as aging biomarkers. We quantitatively examined Caenorhabditis elegans reared individually in a novel apparatus and observed throughout their lives. Early-to-mid–adulthood measures of homeostatic ability jointly predict 62% of longevity variability. Though correlated, markers of growth/muscle maintenance and of metabolic by-products (“age pigments”) report independently on lifespan, suggesting that graceful aging is not a single process. We further identified three microRNAs in which early-adulthood expression patterns individually predict up to 47% of lifespan differences. Though expression of each increases throughout this time, mir-71 and mir-246 correlate with lifespan, while mir-239 anti-correlates. Two of these three microRNA “biomarkers of aging” act upstream in insulin/IGF-1–like signaling (IIS) and other known longevity pathways, thus we infer that these microRNAs not only report on but also likely determine longevity. Thus, fluctuations in early-life IIS, due to variation in these microRNAs and from other causes, may determine individual lifespan

    Hippocampal Atrophy as a Quantitative Trait in a Genome-Wide Association Study Identifying Novel Susceptibility Genes for Alzheimer's Disease

    Get PDF
    With the exception of APOE ε4 allele, the common genetic risk factors for sporadic Alzheimer's Disease (AD) are unknown., which can be considered potential “new” candidate loci to explore in the etiology of sporadic AD. These candidates included EFNA5, CAND1, MAGI2, ARSB, and PRUNE2, genes involved in the regulation of protein degradation, apoptosis, neuronal loss and neurodevelopment. Thus, we identified common genetic variants associated with the increased risk of developing AD in the ADNI cohort, and present publicly available genome-wide data. Supportive evidence based on case-control studies and biological plausibility by gene annotation is provided. Currently no available sample with both imaging and genetic data is available for replication.Using hippocampal atrophy as a quantitative phenotype in a genome-wide scan, we have identified candidate risk genes for sporadic Alzheimer's disease that merit further investigation

    Plakophilin-3 Is Required for Late Embryonic Amphibian Development, Exhibiting Roles in Ectodermal and Neural Tissues

    Get PDF
    The p120-catenin family has undergone a significant expansion during the evolution of vertebrates, resulting in varied functions that have yet to be discerned or fully characterized. Likewise, members of the plakophilins, a related catenin subfamily, are found throughout the cell with little known about their functions outside the desmosomal plaque. While the plakophilin-3 (Pkp3) knockout mouse resulted in skin defects, we find larger, including lethal effects following its depletion in Xenopus. Pkp3, unlike some other characterized catenins in amphibians, does not have significant maternal deposits of mRNA. However, during embryogenesis, two Pkp3 protein products whose temporal expression is partially complimentary become expressed. Only the smaller of these products is found in adult Xenopus tissues, with an expression pattern exhibiting distinctions as well as overlaps with those observed in mammalian studies. We determined that Xenopus Pkp3 depletion causes a skin fragility phenotype in keeping with the mouse knockout, but more novel, Xenopus tailbud embryos are hyposensitive to touch even in embryos lacking outward discernable phenotypes, and we additionally resolved disruptions in certain peripheral neural structures, altered establishment and migration of neural crest, and defects in ectodermal multiciliated cells. The use of two distinct morpholinos, as well as rescue approaches, indicated the specificity of these effects. Our results point to the requirement of Pkp3 in amphibian embryogenesis, with functional roles in a number of tissue types
    corecore