525 research outputs found

    PREVALENCE OF AFLATOXIN IN FEEDS AND COW MILK FROM FIVE COUNTIES IN KENYA

    Get PDF
    ABSTRACT Mycotoxin-producing fungi contaminate food and feeds before, during and after harvest. Aflatoxins are important mycotoxins and aflatoxin B1 (AFB1) is a class 1 human carcinogen (definitely carcinogenic). Aflatoxin M1 (AFM1) is a class 2B (possible) human carcinogen. Aflatoxin B1 in feeds can decrease milk production, reduce fertility and increase susceptibility to infections. A cross-sectional study of aflatoxin contamination of milk and dairy feeds was carried out in five counties in Kenya representing different agro-ecological zones: Kwale, Isiolo, Tharaka-Nithi, Kisii and Bungoma. Dairy feed concentrates and cattle milk were collected twice (dry season and rainy season) from 285 dairy farmers in the five counties and analysed for AFB1 and AFM1, using competitive enzyme-linked immunosorbent assay (ELISA). In the five counties, the proportion of farmers who fed cattle with dairy concentrates varied from zero to 68%. The dairy feed concentrates from farmers had AFB1 levels ranging from less than one part per billion (ppb) to 9661 ppb and the positive samples ranged from 47.8 to 90.3%. The percentages of dairy feeds from farmers with AFB1 above the World Health Organization/Food and Agriculture Organization of the United Nations (WHO/FAO) limit of 5 ppb varied from 33.3% to 87.5 % while 83.3% to 100% of the feeds from retailers and 28.6% to 100% of the feeds from manufacturers exceeded the WHO/FAO limit. Aflatoxin M1 prevalence in milk was lowest in Kwale (13.6%) and highest in Tharaka-Nithi (65.1%). The proportion of milk samples with AFM1 above the WHO/FAO standard of 50 parts per trillion (ppt) varied from 3.4% (Kwale) to 26.2% (Tharaka-Nithi); the highest was 6999ppt. This study shows that aflatoxin contamination is common in dairy feeds and in milk and concentrations may be high. This may contribute to ill health effects in both humans and animals and, therefore, there is need for better understanding of the impacts of aflatoxins in the feed-dairy value chain and appropriate interventions to control aflatoxin contamination in animal feeds

    Human CEACAM1 is targeted by a Streptococcus pyogenes adhesin implicated in puerperal sepsis pathogenesis

    Get PDF
    Life-threatening bacterial infections in women after childbirth, known as puerperal sepsis, resulted in classical epidemics and remain a global health problem. While outbreaks of puerperal sepsis have been ascribed to Streptococcus pyogenes, little is known about disease mechanisms. Here, we show that the bacterial R28 protein, which is epidemiologically associated with outbreaks of puerperal sepsis, specifically targets the human receptor CEACAM1. This interaction triggers events that would favor development of puerperal sepsis, including adhesion to cervical cells, suppression of epithelial wound repair and subversion of innate immune responses. High-resolution structural analysis showed that an R28 domain with IgI3-like fold binds to the N-terminal domain of CEACAM1. Together, these findings demonstrate that a single adhesin-receptor interaction can drive the pathogenesis of bacterial sepsis and provide molecular insights into the pathogenesis of one of the most important infectious diseases in medical history

    DNA Damage in Plant Herbarium Tissue

    Get PDF
    Dried plant herbarium specimens are potentially a valuable source of DNA. Efforts to obtain genetic information from this source are often hindered by an inability to obtain amplifiable DNA as herbarium DNA is typically highly degraded. DNA post-mortem damage may not only reduce the number of amplifiable template molecules, but may also lead to the generation of erroneous sequence information. A qualitative and quantitative assessment of DNA post-mortem damage is essential to determine the accuracy of molecular data from herbarium specimens. In this study we present an assessment of DNA damage as miscoding lesions in herbarium specimens using 454-sequencing of amplicons derived from plastid, mitochondrial, and nuclear DNA. In addition, we assess DNA degradation as a result of strand breaks and other types of polymerase non-bypassable damage by quantitative real-time PCR. Comparing four pairs of fresh and herbarium specimens of the same individuals we quantitatively assess post-mortem DNA damage, directly after specimen preparation, as well as after long-term herbarium storage. After specimen preparation we estimate the proportion of gene copy numbers of plastid, mitochondrial, and nuclear DNA to be 2.4–3.8% of fresh control DNA and 1.0–1.3% after long-term herbarium storage, indicating that nearly all DNA damage occurs on specimen preparation. In addition, there is no evidence of preferential degradation of organelle versus nuclear genomes. Increased levels of C→T/G→A transitions were observed in old herbarium plastid DNA, representing 21.8% of observed miscoding lesions. We interpret this type of post-mortem DNA damage-derived modification to have arisen from the hydrolytic deamination of cytosine during long-term herbarium storage. Our results suggest that reliable sequence data can be obtained from herbarium specimens

    Heparin and Heparan Sulfate: Analyzing Structure and Microheterogeneity [chapter]

    Get PDF
    available in PMC 2013 August 28The structural microheterogeneity of heparin and heparan sulfate is one of the major reasons for the multifunctionality exhibited by this class of molecules. In a physiological context, these molecules primarily exert their effects extracellularly by mediating key processes of cellular cross-talk and signaling leading to the modulation of a number of different biological activities including development, cell proliferation, and inflammation. This structural diversity is biosynthetically imprinted in a nontemplate-driven manner and may also be dynamically remodeled as cellular function changes. Understanding the structural information encoded in these molecules forms the basis for attempting to understand the complex biology they mediate. This chapter provides an overview of the origin of the structural microheterogeneity observed in heparin and heparan sulfate, and the orthogonal analytical methodologies that are required to help decipher this information

    Cement-in-cement stem revision for Vancouver type B periprosthetic femoral fractures after total hip arthroplasty: A 3-year follow-up of 23 cases

    Get PDF
    Background and purpose Revision surgery for periprosthetic femoral fractures around an unstable cemented femoral stem traditionally requires removal of existing cement. We propose a new technique whereby a well-fixed cement mantle can be retained in cases with simple fractures that can be reduced anatomically when a cemented revision is planned. This technique is well established in femoral stem revision, but not in association with a fracture

    Late gadolinium uptake demonstrated with magnetic resonance in patients where automated PERFIT analysis of myocardial SPECT suggests irreversible perfusion defect

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Myocardial perfusion single photon emission computed tomography (MPS) is frequently used as the reference method for the determination of myocardial infarct size. PERFIT<sup>® </sup>is a software utilizing a three-dimensional gender specific, averaged heart model for the automatic evaluation of myocardial perfusion. The purpose of this study was to compare the perfusion defect size on MPS, assessed with PERFIT, with the hyperenhanced volume assessed by late gadolinium enhancement magnetic resonance imaging (LGE) and to relate their effect on the wall motion score index (WMSI) assessed with cine magnetic resonance imaging (cine-MRI) and echocardiography (echo).</p> <p>Methods</p> <p>LGE was performed in 40 patients where clinical MPS showed an irreversible uptake reduction suggesting a myocardial scar. Infarct volume, extent and major coronary supply were compared between MPS and LGE as well as the relationship between infarct size from both methods and WMSI.</p> <p>Results</p> <p>MPS showed a slightly larger infarct volume than LGE (MPS 29.6 ± 23.2 ml, LGE 22.1 ± 16.9 ml, p = 0.01), while no significant difference was found in infarct extent (MPS 11.7 ± 9.4%, LGE 13.0 ± 9.6%). The correlation coefficients between methods in respect to infarct size and infarct extent were 0.71 and 0.63 respectively. WMSI determined with cine-MRI correlated moderately with infarct volume and infarct extent (cine-MRI vs MPS volume r = 0.71, extent r = 0.71, cine-MRI vs LGE volume r = 0.62, extent r = 0.60). Similar results were achieved when wall motion was determined with echo. Both MPS and LGE showed the same major coronary supply to the infarct area in a majority of patients, Kappa = 0.84.</p> <p>Conclusion</p> <p>MPS and LGE agree moderately in the determination of infarct size in both absolute and relative terms, although infarct volume is slightly larger with MPS. The correlation between WMSI and infarct size is moderate.</p

    A portable prototype magnetometer to differentiate ischemic and non-ischemic heart disease in patients with chest pain

    Get PDF
    Background: Magnetocardiography (MCG) is a non-invasive technique used to measure and map cardiac magnetic fields. We describe the predictive performance of a portable prototype magnetometer designed for use in acute and routine clinical settings. We assessed the predictive ability of the measurements derived from the magnetometer for the ruling-out of healthy subjects and patients whose chest pain has a non-ischemic origin from those with ischemic heart disease (IHD). Methods: MCG data were analyzed from a technical performance study, a pilot clinical study, and a young healthy reference group. Participants were grouped to enable differentiation of those with IHD versus non-IHD versus controls: Group A (70 IHD patients); Group B (69 controls); Group C (37 young healthy volunteers). Scans were recorded in an unshielded room. Between-group differences were explored using analysis of variance. The ability of 10 candidate MCG predictors to predict normal/abnormal cases was analyzed using logistic regression. Predictive performance was internally validated using repeated five-fold cross-validation. Results: Three MCG predictors showed a significant difference between patients and age-matched controls (P<0.001); eight predictors showed a significant difference between patients and young healthy volunteers (P<0.001). Logistic regression comparing patients with controls yielded a specificity of 35.0%, sensitivity of 95.4%, and negative predictive value for the ruling-out of IHD of 97.8% (area under the curve 0.78). Conclusion: This analysis represents a preliminary indication that the portable magnetometer can help rule-out healthy subjects and patients whose chest pain has a non-ischemic origin from those with IHD

    Partial pulmonary embolization disrupts alveolarization in fetal sheep

    Get PDF
    BACKGROUND: Although bronchopulmonary dysplasia is closely associated with an arrest of alveolar development and pulmonary capillary dysplasia, it is unknown whether these two features are causally related. To investigate the relationship between pulmonary capillaries and alveolar formation, we partially embolized the pulmonary capillary bed. METHODS: Partial pulmonary embolization (PPE) was induced in chronically catheterized fetal sheep by injection of microspheres into the left pulmonary artery for 1 day (1d PPE; 115d gestational age; GA) or 5 days (5d PPE; 110-115d GA). Control fetuses received vehicle injections. Lung morphology, secondary septal crests, elastin, collagen, myofibroblast, PECAM1 and HIF1 alpha abundance and localization were determined histologically. VEGF-A, Flk-1, PDGF-A and PDGF-R alpha mRNA levels were measured using real-time PCR. RESULTS: At 130d GA (term approximately 147d), in embolized regions of the lung the percentage of lung occupied by tissue was increased from 29 +/- 1% in controls to 35 +/- 1% in 1d PPE and 44 +/- 1% in 5d PPE fetuses (p < 0.001). Secondary septal crest density was reduced from 8 +/- 0% in controls to 5 +/- 0% in 1d PPE and 4 +/- 0% in 5d PPE fetuses (p < 0.05), indicating impaired alveolar formation. The deposition of differentiated myofibroblasts (23 +/- 1% vs 28 +/- 1%; p < 0.001) and elastin fibres (3 +/- 0% vs 4 +/- 0%; p < 0.05) were also impaired in embolized lung regions of PPE fetuses compared to controls. PPE did not alter the deposition of collagen or PECAM1. At 116d GA in 5d PPE fetuses, markers of hypoxia indicated that a small and transient hypoxic event had occurred (hypoxia in 6.7 +/- 1.4% of the tissue within embolized regions of 5d PPE fetuses at 116d compared to 0.8 +/- 0.2% of tissue in control regions). There was no change in the proportion of tissue labelled with HIF1 alpha. There was no change in mRNA levels of the angiogenic factors VEGF and Flk-1, although a small increase in PDGF-R alpha expression at 116d GA, from 1.00 +/- 0.12 in control fetuses to 1.61 +/- 0.18 in 5d PPE fetuses may account for impaired differentiation of alveolar myofibroblasts and alveolar development. CONCLUSIONS: PPE impairs alveolarization without adverse systemic effects and is a novel model for investigating the role of pulmonary capillaries and alveolar myofibroblasts in alveolar formation

    Is TEA an inhibitor for human Aquaporin-1?

    Get PDF
    Excessive water uptake through aquaporins can be life threatening, and disregulation of water permeability causes many diseases. Therefore, reversible aquaporin inhibitors are highly desired. In this paper, we identified the binding site for tetraethylammonium (TEA) of the membrane water channel aquaporin-1 by a combined molecular docking and molecular dynamics simulation approach. The binding site identified from docking studies was independently confirmed with an unbiased molecular dynamics simulation of an aquaporin tetramer embedded in a lipid membrane, surrounded by a 100-mM tetraethylammonium solution in water. A third independent assessment of the binding site was obtained by umbrella sampling simulations. These simulations, in addition, revealed a binding affinity of more than 17 kJ/mol, corresponding to an IC50 value of << 3 mM. Finally, we observed in our simulations a 50% reduction of the water flux in the presence of TEA, in agreement with water permeability measurements on aquaporin expressed in oocytes. These results confirm TEA as a putative lead for an aquaporin-1 inhibitor
    • …
    corecore