460 research outputs found

    The Classic: Bone Morphogenetic Protein

    Get PDF
    This Classic Article is a reprint of the original work by Marshall R. Urist and Basil S. Strates, Bone Morphogenetic Protein. An accompanying biographical sketch of Marshall R. Urist, MD is available at DOI 10.1007/s11999-009-1067-4; a second Classic Article is available at DOI 10.1007/s11999-009-1069-2; and a third Classic Article is available at DOI 10.1007/s11999-009-1070-9. The Classic Article is © 1971 by Sage Publications Inc. Journals and is reprinted with permission from Urist MR, Strates BS. Bone morphogenetic protein. J Dent Res. 1971;50:1392–1406

    New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk.

    Get PDF
    Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes

    Rapid production of human liver scaffolds for functional tissue engineering by high shear stress oscillation-decellularization

    Get PDF
    The development of human liver scaffolds retaining their 3-dimensional structure and extra-cellular matrix (ECM) composition is essential for the advancement of liver tissue engineering. We report the design and validation of a new methodology for the rapid and accurate production of human acellular liver tissue cubes (ALTCs) using normal liver tissue unsuitable for transplantation. The application of high shear stress is a key methodological determinant accelerating the process of tissue decellularization while maintaining ECM protein composition, 3D-architecture and physico-chemical properties of the native tissue. ALTCs were engineered with human parenchymal and non-parenchymal liver cell lines (HepG2 and LX2 cells, respectively), human umbilical vein endothelial cells (HUVEC), as well as primary human hepatocytes and hepatic stellate cells. Both parenchymal and non-parenchymal liver cells grown in ALTCs exhibited markedly different gene expression when compared to standard 2D cell cultures. Remarkably, HUVEC cells naturally migrated in the ECM scaffold and spontaneously repopulated the lining of decellularized vessels. The metabolic function and protein synthesis of engineered liver scaffolds with human primary hepatocytes reseeded under dynamic conditions were maintained. These results provide a solid basis for the establishment of effective protocols aimed at recreating human liver tissue in vitro

    Is there an ideal way to initiate antiplatelet therapy with aspirin? A crossover study on healthy volunteers evaluating different dosing schemes with whole blood aggregometry

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Guidelines recommend an early initiation of aspirin treatment in patients with acute cerebral ischemia. Comparative studies on the best starting dose for initiating aspirin therapy to achieve a rapid antiplatelet effect do not exist. This study evaluated the platelet inhibitory effect in healthy volunteers by using three different aspirin loading doses to gain a model for initiating antiplatelet treatment in acute strokes patients.</p> <p>Methods</p> <p>Using whole blood aggregometry, this study with a prospective, uncontrolled, open, crossover design examined 12 healthy volunteers treated with three different aspirin loading doses: intravenous 500 mg aspirin, oral 500 mg aspirin, and a course of 200 mg aspirin on two subsequent days followed by a five-day course of 100 mg aspirin. Aspirin low response was defined as change of impedance exceeding 0 Ω after stimulation with arachidonic acid.</p> <p>Results</p> <p>Sufficient antiplatelet effectiveness was gained within 30 seconds when intravenous 500 mg aspirin was used. The mean time until antiplatelet effect was 74 minutes for 500 mg aspirin taken orally and 662 minutes (11.2 hours) for the dose scheme with 200 mg aspirin with a high inter- and intraindividual variability in those two regimes. Platelet aggregation returned to the baseline range during the wash-out phase within 4 days.</p> <p>Conclusion</p> <p>Our study reveals that the antiplatelet effect differs significantly between the three different aspirin starting dosages with a high inter- and intraindividual variability of antiplatelet response in our healthy volunteers. To ensure an early platelet inhibitory effect in acute stroke patients, it could be advantageous to initiate the therapy with an intravenous loading dose of 500 mg aspirin. However, clinical outcome studies must still define the best way to initiate antiplatelet treatment with aspirin.</p

    A Cryptic Frizzled Module in Cell Surface Collagen 18 Inhibits Wnt/β−Catenin Signaling

    Get PDF
    Collagens contain cryptic polypeptide modules that regulate major cell functions, such as cell proliferation or death. Collagen XVIII (C18) exists as three amino terminal end variants with specific amino terminal polypeptide modules. We investigated the function of the variant 3 of C18 (V3C18) containing a frizzled module (FZC18), which carries structural identity with the extracellular cysteine-rich domain of the frizzled receptors. We show that V3C18 is a cell surface heparan sulfate proteoglycan, its topology being mediated by the FZC18 module. V3C18 mRNA was expressed at low levels in 21 normal adult human tissues. Its expression was up-regulated in fibrogenesis and in small well-differentiated liver tumors, but decreased in advanced human liver cancers. Low FZC18 immunostaining in liver cancer nodules correlated with markers of high Wnt/β−catenin activity. V3C18 (Mr = 170 kD) was proteolytically processed into a cell surface FZC18-containing 50 kD glycoprotein precursor that bound Wnt3a in vitro through FZC18 and suppressed Wnt3a-induced stabilization of β−catenin. Ectopic expression of either FZC18 (35 kD) or its 50 kD precursor inhibited Wnt/β−catenin signaling in colorectal and liver cancer cell lines, thus downregulating major cell cycle checkpoint gatekeepers cyclin D1 and c-myc and reducing tumor cell growth. By contrast, full-length V3C18 was unable to inhibit Wnt signaling. In summary, we identified a cell-surface signaling pathway whereby FZC18 inhibits Wnt/β−catenin signaling. The signal, encrypted within cell-surface C18, is released by enzymatic processing as an active frizzled cysteine-rich domain (CRD) that reduces cancer cell growth. Thus, extracellular matrix controls Wnt signaling through a collagen-embedded CRD behaving as a cell-surface sensor of proteolysis, conveying feedback cues to control cancer cell fate

    Infant difficult behaviors in the context of perinatal biomedical conditions and early child environment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Problems experienced within the first year of an infant's life can be precursors of later mental health conditions. The purpose of this study was to examine the frequency and continuity of difficult behaviors in infants at 3 and 6 months of age and the associations of these difficulties with biomedical and psychosocial factors.</p> <p>Methods</p> <p>This study was a part of an ongoing prospective birth-cohort study. Study participants were 189 uniparous mothers and their full-term newborns. The index of infant difficult behavior was constructed. This index was then associated with the following factors: delivery mode, newborn function after birth, maternal emotional well-being, risk behavior, subjective evaluation of the quality of the relationship of the couple, and attitudes toward infant-rearing.</p> <p>Results</p> <p>Common difficult behaviors, including crying, sleeping and eating problems, were characteristic for 30.2% of 3 month old and for 22.2% of 6 month old full-term infants. The expression of infant difficult behaviors at the age of 3 months increased the likelihood of the expression of these difficulties at 6 months by more than 5 times. Factors including younger maternal age, poor prenatal and postnatal emotional well-being, prenatal alcohol consumption, low satisfaction with the couple's relationship before pregnancy, and deficiency of infant-centered maternal attitudes towards infant-rearing increased the likelihood of difficult behaviors in infants at the age of 3 months. Low maternal satisfaction with the relationship of the couple before pregnancy, negative emotional reactions of both parents toward pregnancy (as reported by the mother) and the deficiency of an infant-centered maternal attitude towards infant-rearing increased the likelihood of infant difficult behaviors continuing between the ages of 3 to 6 months. Perinatal biomedical conditions were not related to the difficult behaviors in infants.</p> <p>Conclusions</p> <p>Our study suggests that early onset of difficult behavior highly increases the risk for the continuation of difficult behavior during infancy. In general, the impact of prenatal psychosocial environment on infant behavior decreases from the ages of 3 to 6 months; however, some prenatal and preconceptional psychosocial factors have direct associations with the continuity of difficult behaviors through the first half-year of an infant's life.</p

    Fibulin-5, an integrin-binding matricellular protein: its function in development and disease

    Get PDF
    Interactions between the extracellular matrix (ECM) and cells are critical in embryonic development, tissue homeostasis, physiological remodeling, and tumorigenesis. Matricellular proteins, a group of ECM components, mediate cell-ECM interactions. One such molecule, Fibulin-5 is a 66-kDa glycoprotein secreted by various cell types, including vascular smooth muscle cells (SMCs), fibroblasts, and endothelial cells. Fibulin-5 contributes to the formation of elastic fibers by binding to structural components including tropoelastin and fibrillin-1, and to cross-linking enzymes, aiding elastic fiber assembly. Mice deficient in the fibulin-5 gene (Fbln5) exhibit systemic elastic fiber defects with manifestations of loose skin, tortuous aorta, emphysematous lung and genital prolapse. Although Fbln5 expression is down-regulated after birth, following the completion of elastic fiber formation, expression is reactivated upon tissue injury, affecting diverse cellular functions independent of its elastogenic function. Fibulin-5 contains an evolutionally conserved arginine-glycine-aspartic acid (RGD) motif in the N-terminal region, which mediates binding to a subset of integrins, including α5β1, αvβ3, and αvβ5. Fibulin-5 enhances substrate attachment of endothelial cells, while inhibiting migration and proliferation in a cell type- and context-dependent manner. The antagonistic function of fibulin-5 in angiogenesis has been demonstrated in vitro and in vivo; fibulin-5 may block angiogenesis by inducing the anti-angiogenic molecule thrompospondin-1, by antagonizing VEGF165-mediated signaling, and/or by antagonizing fibronectin-mediated signaling through directly binding and blocking the α5β1 fibronectin receptor. The overall effect of fibulin-5 on tumor growth depends on the balance between the inhibitory property of fibulin-5 on angiogenesis and the direct effect of fibulin-5 on proliferation and migration of tumor cells. However, the effect of tumor-derived versus host microenvironment-derived fibulin-5 remains to be evaluated

    Distinct Salmonella Enteritidis lineages associated with enterocolitis in high-income settings and invasive disease in low-income settings.

    Get PDF
    An epidemiological paradox surrounds Salmonella enterica serovar Enteritidis. In high-income settings, it has been responsible for an epidemic of poultry-associated, self-limiting enterocolitis, whereas in sub-Saharan Africa it is a major cause of invasive nontyphoidal Salmonella disease, associated with high case fatality. By whole-genome sequence analysis of 675 isolates of S. Enteritidis from 45 countries, we show the existence of a global epidemic clade and two new clades of S. Enteritidis that are geographically restricted to distinct regions of Africa. The African isolates display genomic degradation, a novel prophage repertoire, and an expanded multidrug resistance plasmid. S. Enteritidis is a further example of a Salmonella serotype that displays niche plasticity, with distinct clades that enable it to become a prominent cause of gastroenteritis in association with the industrial production of eggs and of multidrug-resistant, bloodstream-invasive infection in Africa.This work was supported by the Wellcome Trust. We would like to thank the members of the Pathogen Informatics Team and the core sequencing teams at the Wellcome Trust Sanger Institute (Cambridge, UK). We are grateful to D. Harris for work in managing the sequence data

    The Oxytocin Receptor (OXTR) Contributes to Prosocial Fund Allocations in the Dictator Game and the Social Value Orientations Task

    Get PDF
    Background: Economic games observe social decision making in the laboratory that involves real money payoffs. Previously we have shown that allocation of funds in the Dictator Game (DG), a paradigm that illustrates costly altruistic behavior, is partially determined by promoter-region repeat region variants in the arginine vasopressin 1a receptor gene (AVPR1a). In the current investigation, the gene encoding the related oxytocin receptor (OXTR) was tested for association with the DG and a related paradigm, the Social Values Orientation (SVO) task. Methodology/Principal Findings: Association (101 male and 102 female students) using a robust-family based test between 15 single tagging SNPs (htSNPs) across the OXTR was demonstrated with both the DG and SVO. Three htSNPs across the gene region showed significant association with both of the two games. The most significant association was observed with rs1042778 (p = 0.001). Haplotype analysis also showed significant associations for both DG and SVO. Following permutation test adjustment, significance was observed for 2–5 locus haplotypes (p,0.05). A second sample of 98 female subjects was subsequently and independently recruited to play the dictator game and was genotyped for the three significant SNPs found in the first sample. The rs1042778 SNP was shown to be significant for the second sample as well (p = 0.004, Fisher’s exact test). Conclusions: The demonstration that genetic polymorphisms for the OXTR are associated with human prosocial decisio
    corecore