62 research outputs found

    E7 proteins from oncogenic human papillomavirus types transactivate p73: role in cervical intraepithelial neoplasia

    Get PDF
    In common with other E2F1 responsive genes such as p14ARF and B-myb, the promoter of p73 is shown to be positively regulated in cell lines and primary human keratinocytes by E7 proteins from oncogenic human papillomavirus (HPV) types 16, 18, 31 and 33, but not HPV 6. Mutational analysis revealed that transactivation of the p73 promoter by HPV 16E7 requires association with pRb. Expression of p73 in normal cervical epithelium is confined to the basal and supra-basal layers. In contrast, expression in neoplastic lesions is detected throughout the epithelium and increases with grade of neoplasia, being maximal in squamous cell cancers (SCC). Deregulation of expression of the N-terminal splice variant p73Δ2 was observed in a significant proportion of cancers, but not in normal epithelium. The frequent over-expression of p73Δ2, which has recognized transdominant properties, in malignant and pre-malignant lesions suggests a role in the oncogenic process in cervical epithelium

    Overexpressed TP73 induces apoptosis in medulloblastoma

    Get PDF
    Abstract Background Medulloblastoma is the most common malignant brain tumor of childhood. Children who relapse usually die of their disease, which reflects resistance to radiation and/or chemotherapy. Improvements in outcome require a better understanding of the molecular basis of medulloblastoma growth and treatment response. TP73 is a member of the TP53 tumor suppressor gene family that has been found to be overexpressed in a variety of tumors and mediates apoptotic responses to genotoxic stress. In this study, we assessed expression of TP73 RNA species in patient tumor specimens and in medulloblastoma cell lines, and manipulated expression of full-length TAp73 and amino-terminal truncated ΔNp73 to assess their effects on growth. Methods We analyzed medulloblastoma samples from thirty-four pediatric patients and the established medulloblastoma cell lines, Daoy and D283MED, for expression of TP73 RNA including the full-length transcript and the 5'-terminal variants that encode the ΔNp73 isoform, as well as TP53 RNA using quantitative real time-RTPCR. Protein expression of TAp73 and ΔNp73 was quantitated with immunoblotting methods. Clinical outcome was analyzed based on TP73 RNA and p53 protein expression. To determine effects of overexpression or knock-down of TAp73 and ΔNp73 on cell cycle and apoptosis, we analyzed transiently transfected medulloblastoma cell lines with flow cytometric and TUNEL methods. Results Patient medulloblastoma samples and cell lines expressed full-length and 5'-terminal variant TP73 RNA species in 100-fold excess compared to non-neoplastic brain controls. Western immunoblot analysis confirmed their elevated levels of TAp73 and amino-terminal truncated ΔNp73 proteins. Kaplan-Meier analysis revealed trends toward favorable overall and progression-free survival of patients whose tumors display TAp73 RNA overexpression. Overexpression of TAp73 or ΔNp73 induced apoptosis under basal growth conditions in vitro and sensitized them to cell death in response to chemotherapeutic agents. Conclusion These results indicate that primary medulloblastomas express significant levels of TP73 isoforms, and suggest that they can modulate the survival and genotoxic responsiveness of medulloblastomas cells

    Multiple Novel Nesprin-1 and Nesprin-2 Variants Act as Versatile Tissue-Specific Intracellular Scaffolds

    Get PDF
    <div><h3>Background</h3><p>Nesprins (<u>N</u>uclear <u>e</u>nvelope <u>s</u>pectrin-<u>r</u>epeat <u>p</u>roteins) are a novel family of giant spectrin-repeat containing proteins. The nesprin-1 and nesprin-2 genes consist of 146 and 116 exons which encode proteins of ∼1mDa and ∼800 kDa is size respectively when all the exons are utilised in translation. However emerging data suggests that the nesprins have multiple alternative start and termination sites throughout their genes allowing the generation of smaller isoforms.</p> <h3>Results</h3><p>In this study we set out to identify novel alternatively transcribed nesprin variants by screening the EST database and by using RACE analysis to identify cDNA ends. These two methods provided potential hits for alternative start and termination sites that were validated by PCR and DNA sequencing. We show that these alternative sites are not only expressed in a tissue specific manner but by combining different sites together it is possible to create a wide array of nesprin variants. By cloning and expressing small novel nesprin variants into human fibroblasts and U2OS cells we show localization to actin stress-fibres, focal adhesions, microtubules, the nucleolus, nuclear matrix and the nuclear envelope (NE). Furthermore we show that the sub-cellular localization of individual nesprin variants can vary depending on the cell type, suggesting any single nesprin variant may have different functions in different cell types.</p> <h3>Conclusions</h3><p>These studies suggest nesprins act as highly versatile tissue specific intracellular protein scaffolds and identify potential novel functions for nesprins beyond cytoplasmic-nuclear coupling. These alternate functions may also account for the diverse range of disease phenotypes observed when these genes are mutated.</p> </div

    Recessive mutations in muscle-specific isoforms of FXR1 cause congenital multi-minicore myopathy

    Get PDF
    FXR1 is an alternatively spliced gene that encodes RNA binding proteins (FXR1P) involved in muscle development. In contrast to other tissues, cardiac and skeletal muscle express two FXR1P isoforms that incorporate an additional exon-15. We report that recessive mutations in this particular exon of FXR1 cause congenital multi-minicore myopathy in humans and mice. Additionally, we show that while Myf5-dependent depletion of all FXR1P isoforms is neonatal lethal, mice carrying mutations in exon-15 display non-lethal myopathies which vary in severity depending on the specific effect of each mutation on the protein

    Identification of two contiguous minimally deleted regions on chromosome 1p36.31–p36.32 in oligodendroglial tumours

    Get PDF
    Loss of the short arm of chromosome 1 is a hallmark of oligodendroglial tumours (OTs). Deletion mapping studies in OTs have revealed multiple commonly deleted regions on chromosome 1p, suggesting that there are more than one tumour suppressor gene. To map critical deletion regions on 1p, a series of 25 OTs were examined for loss of heterozygosity (LOH) on 19 polymorphic markers across the 1p arm using microsatellite analysis. Our study revealed that 60% of tumours had LOH of all informative markers on 1p and identified one tumour showing LOH at telomeric markers only. Since this deletion region lies in one of the critical deletion intervals defined previously, we then screened another series of 27 OTs specifically at 1p36.3 for LOH using nine polymorphic markers. A total of 12% (six out of 52) of tumours were found to carry interstitial deletions. The allelic status and the deletion breakpoints in these tumours with interstitial deletion were further verified by fluorescent in situ hybridisation. The small overlapping intervals facilitated the delineation of two contiguous minimally deleted regions of 0.76 Mb, defined by D1S468 and D1S2845, and of 0.41 Mb, bound by D1S2893 and D1S1608, on 1p36.31–36.32. Based on current reference human genome sequence these deletion regions have been sequenced almost to entirety and contain eight annotated genes. TP73, DFFB and SHREW1 are the only known genes located in these deletion regions, while the others are uncharacterised novel genes. In conclusion, our study has narrowed down the critical tumour suppressor loci on 1p36.3, in which two minimally deleted regions are mapped, and markedly reduced the number of candidate genes to be screened for their involvement in OT development

    Regulation of p73 activity by post-translational modifications

    Get PDF
    The transcription factor p73 is a member of the p53 family that can be expressed as at least 24 different isoforms with pro- or anti-apoptotic attributes. The TAp73 isoforms are expressed from an upstream promoter and are regarded as bona fide tumor suppressors; they can induce cell cycle arrest/apoptosis and protect against genomic instability. On the other hand, ΔNp73 isoforms lack the N-terminus transactivation domain; hence, cannot induce the expression of pro-apoptotic genes, but still can oligomerize with TAp73 or p53 to block their transcriptional activities. Therefore, the ratio of TAp73 isoforms to ΔNp73 isoforms is critical for the quality of the response to a genomic insult and needs to be delicately regulated at both transcriptional and post-translational level. In this review, we will summarize the current knowledge on the post-translational regulatory pathways involved to keep p73 protein under control. A comprehensive understanding of p73 post-translational modifications will be extremely useful for the development of new strategies for treating and preventing cancer

    Adenovirus-mediated TA-p73β gene transfer increases chemosensitivity of human malignant melanomas

    Full text link
    Malignant melanoma is the most aggressive form of skin cancer and has proven to be highly resistant to conventional chemotherapy. Intriguingly, the p53 tumor suppressor, a main mediator of chemoresistance in other tumor types, is rarely mutated in melanoma. However, we have previously shown that anti-apoptotic isoforms of p73 (ΔTA-p73), another member of the p53 family, are overexpressed in metastatic melanomas. ΔTA-p73 can oppose the pro-apoptotic functions of p53 and full length p73, and thus it could contribute to melanoma chemoresistance. In this study, we use an efficient adenoviral-based gene transfer approach to introduce a transcriptionally active form of p73 (TA-p73β) in melanoma cells, with the objective of overcoming drug resistance. Interestingly, TA-p73β significantly sensitized 5 out of 7 aggressive melanoma cell lines to the standard therapeutic agents adriamycin and cisplatin. More importantly, TA-p73β displayed a synergistic effect in vivo allowing adriamycin or cisplatin to block melanoma cell growth in mouse xenograft models ( p < 0.05). In summary, our data show that Ad-mediated TA-p73β gene expression can markedly sensitize a subset of melanoma cell lines to adriamycin and cisplatin in vitro and in vivo , suggesting a new chemosensitization strategy for malignant melanomas.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44369/1/10495_2006_Article_3407.pd

    Microbial carcinogenic toxins and dietary anti-cancer protectants

    Get PDF
    corecore