5,458 research outputs found

    Measurement and Modeling of Subway Near Shadowing Phenomenon.

    Get PDF
    This paper focuses on one vital aspect in propagation characteristics inside subway tunnels: near shadowing phenomenon in a practical environment. In order to characterize this effect, an accurate measurement has been made at 2.4 GHz in a real environment in Madrid subway. By analyzing the numerical results in this measurement, the characteristic of near shadowing phenomenon in propagation process has been revealed and corresponding engineering suggestions have been given in order to compensate the near shadowing effect. Finally, statistical model including the depth, duration and length of near shadowing, fast fading and attenuation inside wide tunnel and narrow tunnel has been built and simulated

    Propagation Mechanism Analysis Before the Break Point Inside Tunnels

    Get PDF
    There is no unanimous consensus yet on the propagation mechanism before the break point inside tunnels. Some deem that the propagation mechanism follows the free space model, others argue that it should be described by the multimode waveguide model. Firstly, this paper analyzes the propagation loss in two mechanisms. Then, by conjunctively using the propagation theory and the three-dimensional solid geometry, a generic analytical model for the boundary between the free space mechanism and the multi-mode waveguide mechanism inside tunnels has been presented. Three measurement campaigns validate the model in different tunnels at different frequencies. Furthermore, the condition of the validity of the free space model used in tunnel environment has been discussed in some specific situations. Finally, through mathematical derivation, the seemingly conflicting viewpoints on the free space mechanism and the multi-mode waveguide mechanism have been unified in some specific situations by the presented generic model. The results in this paper can be helpful to gain deeper insight and better understanding of the propagation mechanism inside tunnel

    Survival outcome and EMT suppression mediated by a lectin domain interaction of Endo180 and CD147

    Get PDF
    Epithelial cell-cell contacts maintain normal glandular tissue homeostasis, and their breakage can trigger epithelial-to-mesenchymal transition (EMT), a fundamental step in the development of metastatic cancer. Despite the ability of C-type lectin domains (CTLD) to modulate cell-cell adhesion, it is not known if they modulate epithelial adhesion in EMT and tumor progression. Here, the multi-CTLD mannose receptor, Endo180 (MRC2/uPARAP), was shown using the Kaplan-Meier analysis to be predictive of survival outcome in men with early prostate cancer. A proteomic screen of novel interaction partners with the fourth CTLD (CTLD4) in Endo180 revealed that its complex with CD147 is indispensable for the stability of three-dimensional acini formed by nontransformed prostate epithelial cells (PEC). Mechanistic study using knockdown of Endo180 or CD147, and treatment with an Endo180 mAb targeting CTLD4 (clone 39.10), or a dominant-negative GST-CTLD4 chimeric protein, induced scattering of PECs associated with internalization of Endo180 into endosomes, loss of E-cadherin (CDH1/ECAD), and unzipping of cell-cell junctions. These findings are the first to demonstrate that a CTLD acts as a suppressor and regulatory switch for EMT; thus, positing that stabilization of Endo180-CD147 complex is a viable therapeutic strategy to improve rates of prostate cancer survival

    The Neurological Traces of Look-Alike Avatars

    Get PDF
    We designed an observational study where participants (n = 17) were exposed to pictures and look-alike avatars pictures of themselves, a familiar friend or an unfamiliar person. By measuring participants’ brain activity with electroencephalography (EEG), we found face-recognition event related potentials (ERPs) in the visual cortex, around 200–250 ms, to be prominent for the different familiarity levels. A less positive component was found for self-recognized pictures (P200) than pictures of others, showing similar effects in both real faces and look-alike avatars. A rapid adaptation in the same component was found when comparing the neural processing of avatar faces vs. real faces, as if avatars in general were assimilated as real face representations over time. ERP results also showed that in the case of the self-avatar, the P200 component correlated with more complex conscious encodings of self-representation, i.e., the difference in voltage in the P200 between the self-avatar and the self-picture was reduced in participants that felt the avatar looked like them. This study is put into context within the literature of self-recognition and face recognition in the visual cortex. Additionally, the implications of these results on look-alike avatars are discussed both for future virtual reality (VR) and neuroscience studies

    Propagation Mechanism modeling in the Near-Region of Arbitrary Cross-Sectional Tunnels.

    Get PDF
    Along with the increase of the use of working frequencies in advanced radio communication systems, the near-region inside tunnels lengthens considerably and even occupies the whole propagation cell or the entire length of some short tunnels. This paper analytically models the propagation mechanisms and their dividing point in the near-region of arbitrary cross-sectional tunnels for the first time. To begin with, the propagation losses owing to the free space mechanism and the multimode waveguide mechanism are modeled, respectively. Then, by conjunctively employing the propagation theory and the three-dimensional solid geometry, the paper presents a general model for the dividing point between two propagation mechanisms. It is worthy to mention that this model can be applied in arbitrary cross-sectional tunnels. Furthermore, the general dividing point model is specified in rectangular, circular, and arched tunnels, respectively. Five groups of measurements are used to justify the model in different tunnels at different frequencies. Finally, in order to facilitate the use of the model, simplified analytical solutions for the dividing point in five specific application situations are derived. The results in this paper could help deepen the insight into the propagation mechanisms in tunnels

    AGE-modified basement membrane cooperates with Endo180 to promote epithelial cell invasiveness and decrease prostate cancer survival

    Get PDF
    Biomechanical strain imposed by age-related thickening of the basal lamina and augmented tissue stiffness in the prostate gland coincides with increased cancer risk. Here we hypothesized that the structural alterations in the basal lamina associated with age can induce mechanotransduction pathways in prostate epithelial cells (PECs) to promote invasiveness and cancer progression. To demonstrate this, we developed a 3D model of PEC acini in which thickening and stiffening of basal lamina matrix was induced by advanced glycation end-product (AGE)-dependent non-enzymatic crosslinking of its major components, collagen IV and laminin. We used this model to demonstrate that antibody targeted blockade of CTLD2, the second of eight C-type lectin-like domains in Endo180 (CD280, CLEC13E, KIAA0709, MRC2, TEM9, uPARAP) that can recognize glycosylated collagens, reversed actinomyosin-based contractility [myosin-light chain-2 (MLC2) phosphorylation], loss of cell polarity, loss of cell–cell junctions, luminal infiltration and basal invasion induced by AGE-modified basal lamina matrix in PEC acini. Our in vitro results were concordant with luminal occlusion of acini in the prostate glands of adult Endo180ΔEx2–6/ΔEx2–6 mice, with constitutively exposed CTLD2 and decreased survival of men with early (non-invasive) prostate cancer with high epithelial Endo180 expression and levels of AGE. These findings indicate that AGE-dependent modification of the basal lamina induces invasive behaviour in non-transformed PECs via a molecular mechanism linked to cancer progression. This study provides a rationale for targeting CTLD2 in Endo180 in prostate cancer and other pathologies in which increased basal lamina thickness and tissue stiffness are driving factors

    Association of VAV2 and VAV3 polymorphisms with cardiovascular risk factors

    Get PDF
    Hypertension, diabetes and obesity are cardiovascular risk factors closely associated to the development of renal and cardiovascular target organ damage. VAV2 and VAV3, members of the VAV family proto-oncogenes, are guanosine nucleotide exchange factors for the Rho and Rac GTPase family, which is related with cardiovascular homeostasis. We have analyzed the relationship between the presence of VAV2 rs602990 and VAV3 rs7528153 polymorphisms with cardiovascular risk factors and target organ damage (heart, vessels and kidney) in 411 subjects. Our results show that being carrier of the T allele in VAV2 rs602990 polymorphism is associated with an increased risk of obesity, reduced levels of ankle-brachial index and diastolic blood pressure and reduced retinal artery caliber. In addition, being carrier of T allele is associated with increased risk of target organ damage in males. On the other hand, being carrier of the T allele in VAV3 rs7528153 polymorphism is associated with a decreased susceptibility of developing a pathologic state composed by the presence of hypertension, diabetes, obesity or cardiovascular damage, and with an increased risk of developing altered basal glycaemia. This is the first report showing an association between VAV2 and VAV3 polymorphisms with cardiovascular risk factors and target organ damage

    A Close Nuclear Black Hole Pair in the Spiral Galaxy NGC 3393

    Full text link
    The current picture of galaxy evolution advocates co-evolution of galaxies and their nuclear massive black holes (MBHs), through accretion and merging. Quasar pairs (6,000-300,000 light-years separation) exemplify the first stages of this gravitational interaction. The final stages, through binary MBHs and final collapse with gravitational wave emission, are consistent with the sub-light-year separation MBHs inferred from optical spectra and light-variability of two quasars. The double active nuclei of few nearby galaxies with disrupted morphology and intense star formation (e.g., NGC 6240 and Mkn 463; ~2,400 and ~12,000 light-years separation respectively) demonstrate the importance of major mergers of equal mass spirals in this evolution, leading to an elliptical galaxy, as in the case of the double radio nucleus (~15 light-years separation) elliptical 0402+379. Minor mergers of galaxies with a smaller companion should be a more common occurrence, evolving into spiral galaxies with active MBH pairs, but have hitherto not been seen. Here we report the presence of two active MBHs, separated by ~430 light-years, in the Seyfert galaxy NGC 3393. The regular spiral morphology and predominantly old circum-nuclear stellar population of this galaxy, and the closeness of the MBHs embedded in the bulge, suggest the result of minor merger evolution.Comment: Preprint (not final) version of a paper to appear in Natur

    Modeling of the Division Point of Different Propagation Mechanisms in the Near-Region Within Arched Tunnels

    Get PDF
    An accurate characterization of the near-region propagation of radio waves inside tunnels is of practical importance for the design and planning of advanced communication systems. However, there has been no consensus yet on the propagation mechanism in this region. Some authors claim that the propagation mechanism follows the free space model, others intend to interpret it by the multi-mode waveguide model. This paper clarifies the situation in the near-region of arched tunnels by analytical modeling of the division point between the two propagation mechanisms. The procedure is based on the combination of the propagation theory and the three-dimensional solid geometry. Three groups of measurements are employed to verify the model in different tunnels at different frequencies. Furthermore, simplified models for the division point in five specific application situations are derived to facilitate the use of the model. The results in this paper could help to deepen the insight into the propagation mechanism within tunnel environments

    Study of the Decays B0 --> D(*)+D(*)-

    Full text link
    The decays B0 --> D*+D*-, B0 --> D*+D- and B0 --> D+D- are studied in 9.7 million Y(4S) --> BBbar decays accumulated with the CLEO detector. We determine Br(B0 --> D*+D*-) = (9.9+4.2-3.3+-1.2)e-4 and limit Br(B0 --> D*+D-) < 6.3e-4 and Br(B0 --> D+D-) < 9.4e-4 at 90% confidence level (CL). We also perform the first angular analysis of the B0 --> D*+D*- decay and determine that the CP-even fraction of the final state is greater than 0.11 at 90% CL. Future measurements of the time dependence of these decays may be useful for the investigation of CP violation in neutral B meson decays.Comment: 21 pages, 5 figures, submitted to Phys. Rev.
    corecore