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Abstract—Due to the bursty nature of Internet traffic, network
service providers (NSPs) are forced to expand their network
capacity in order to meet the ever-increasing peak-time traffic
demand, which is however costly and inefficient. How to shift the
traffic demand from peak time to off-peak time is a challenging
task for NSPs. In this paper, we study the implementation
of time-dependent pricing (TDP) for bandwidth slicing in
software-defined cellular networks under information asymmetry
and price discrimination. Congestion prices indicating real-time
congestion levels of different links are used as a signal to
motivate delay-tolerant users to defer their traffic demands. We
formulate the joint pricing and bandwidth demand optimization
problem as a two-stage Stackelberg leader-follower game. Then,
we investigate how to derive the optimal solutions under the
scenarios of both complete and incomplete information. We
also extend the results from the simplified case of a single
congested link to the more complicated case of multiple congested
links, where price discrimination is employed to dynamically
adjust the price of each congested link in accordance with its
real-time congestion level. Simulation results demonstrate that
the proposed pricing scheme achieves superior performance in
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increasing the NSP’s revenue and reducing the peak-to-average
traffic ratio (PATR).

Index Terms—Time-dependent pricing, bandwidth slicing,
price discrimination, information asymmetry, software-defined
cellular networks.

I. INTRODUCTION

S pointed out by Cisco, global mobile Internet traffic has
grown 17-fold over the past five years. In particular, with
the proliferation of multimedia applications and ever-growing
demands for multimedia data, peak-time traffic has increased
by approximately 50 percent and will keep growing at
high speed [1]. To accommodate the peak-time traffic,
network service providers (NSPs) have to continuously expand
their network capacity by investing in more infrastructure.
Nevertheless, the pace of deploying new network infrastructure
can hardly catch up with the growth of data traffic. When
the network capacity is insufficient to meet the quality
of service (QoS) requirements (e.g., bandwidth demand,
delay, or jitter [2]) of all on-going traffic, coordination
amongst different traffic flows is essential to guarantee
reliable service provisioning. However, considering the bursty
nature of multimedia data traffic and the corresponding high
peak-to-average traffic ratio (PATR), it is not easy to achieve
a network-wide coordination without a powerful centralized
controlling unit and a scalable management framework.
Software-defined networking (SDN) which decouples the
control plane from the data plane provides a flexible and
programmable framework for implementing centralized traffic
control and management in cellular networks [3]. Since
all control functionalities are left to the control plane,
the SDN controller with a network-wide view uses the
southbound application programming interface (API) to apply
different traffic control and management policies without
incurring a significant modification to underlying routers or
switches [4]. Moreover, by integrating SDN with network
function virtualization (NFV) [5], network resources such as
bandwidth, CPU, buffer, etc., can be virtualized, split into
distinct slices, and allocated dynamically based on the overall
network states. This provides a new paradigm for NSPs to cope
with the peak-time traffic via on-demand resource slicing.
In this paper, we mainly focus on bandwidth slicing in
software-defined cellular networks, while the derived results



can be naturally extended to the slicing of other virtual
resources. Towards implementing on-demand bandwidth
slicing, bandwidth provisioning has to be adapted to the
temporal-spatial variation of link condition and traffic demand.
Pure-technical solutions mainly rely on dividing traffic into
separate classes for applying different control policies via
either parsing Ethernet, IP, or TCP/UDP header fields or
using deep packet inspection technology [6]-[9]. However,
these approaches require frequent signaling message exchange
between the controller and the data plane. Moreover, the
implementation complexity increases exponentially with the
volume of data traffic. Thus, instead of relying on pure
technical approaches, we explore an economic approach, i.e.,
pricing, which differentiates links with different congestion
levels and enables autonomous user behavior adjustment.
Specifically, effective peak-time traffic control can be realized
by charging users not only based on the amount of required
bandwidth, but also according to the time of usage. Such
kind of pricing scheme is called time-dependent pricing (TDP)
[10], [11]. Compared to other pricing schemes, TDP is more
effective to flatten the fluctuation of the peak-time traffic
demand over the whole network by taking both the spectral
and temporal dimensions into consideration. For instance,
some delay-tolerant users may choose to shift their bandwidth
demands from the peak time to the non-peak time in order to
reduce the high peak-time costs.

However, when implementing TDP for bandwidth slicing
in software-defined cellular networks, there exist two major
challenges that have to be addressed, i.e., information
asymmetry and price discrimination. First, due to the
heterogeneous nature of users, the delay sensitivity of each
user is not identical. Namely, some users value the cost
of delay more than others. Generally, users with low delay
sensitivity are more prone to shift their demands from peak
to non-peak time. Nevertheless, each user’s delay sensitivity
is generally private information, which is only known to the
user itself and is unavailable to the NSP. This raises the
so-called problem of information asymmetry. How to design
a pricing scheme to motivate users to defer their traffic (or
bandwidth demands equivalently) during traffic peak time
while simultaneously maximizing the economic benefits of the
NSP under with asymmetric information is still nontrivial.

Second, conventional TDP studies generally adopt a uniform
pricing approach [12], [13], in which the congestion price
per unit of bandwidth imposed on different congested links is
uniform. Uniform pricing can be easily implemented since all
the congested links are treated in the same way. However, the
economic benefits of the NSP are severely degraded compared
to the discriminatory pricing approach where the price of
each congested link is dynamically adjusted in accordance
with the real-time congestion level. On the other hand, price
discrimination also increases the computation complexity, thus
making the formulated optimization problem intractable.

The motivation of this work is to design a new
TDP solution to motivate users to defer their traffic (or
bandwidth demands equivalently) during traffic peak time
while simultaneously maximizing the economic benefits of the
NSP under information asymmetry and price discrimination.

We formulate the pricing and bandwidth demand joint
optimization problem by using a game-theoretical approach
to capture the competitive interactions between the NSP and
users. In particular, a two-stage Stackelberg leader-follower
game is employed to model the dominant market position
of the NSP over the users. The proposed scheme consists
of two stages. In the first stage, the SDN controller issues
congestion prices which indicate the current link congestion
levels to users. The congestion price is used as a signal to
incentivize delay-tolerant users to postpone their bandwidth
demands. Then, each user individually determines whether
to defer its demand or not by comparing the delay costs
with the congestion penalty. In this way, the controller
does not need to inspect the traffic of all the users, which
can significantly reduce the overall signaling overhead. The
proposed scheme can also be easily implemented in the more
practical incomplete information scenario. Moreover, it is
actually an economic approach which does not require any
modification to the existing SDN architecture and preserves
great consistency. The main contributions of this work are
summarized as follows:

o Multiple scenarios of information availability and
cases of link congestion. The complete information
scenario where the NSP has the perfect knowledge of
each user’s delay sensitivity is firstly studied to serve as
a benchmark. Then, the incomplete information scenario
where the NSP possesses only the statistical information
of users’ delay sensitivity is investigated. Since the
conventional deterministic approach cannot be directly
applied, a stochastic modeling approach is employed to
derive the optimal pricing strategy. Furthermore, we not
only consider the simplified case of a single congested
link but also investigate the more complicated case with
multiple congested links with price discrimination for
both the complete and incomplete information scenarios.

o Joint pricing and bandwidth splicing optimization
under  information asymmetry and  price
discrimination. We jointly optimize pricing and
bandwidth slicing by using the backward induction
approach under various practical constraints. We start
from the second stage, and derive both the deterministic
and stochastic expressions of users’ best response
strategies for the complete and incomplete information
scenarios, respectively. Then, based on the derived
users’ best response strategies, the discriminatory
pricing problem in the first stage is solved to maximize
the NSP’s utility. When considering both information
asymmetry and price discrimination, the formulated
optimization problem is NP-hard since the pricing
variables of different congested links are coupled
together. To provide a tractable solution, we transform
the non-convex optimization problem into a variational
inequality problem and then provide a gradient-based
iterative pricing algorithm. We also provide rigorous
theoretical analysis from the perspectives of convergence,
computational complexity, and solution uniqueness.

o Effective peak shaving. Extensive simulations are



conducted to evaluate the performance of the proposed
TDP scheme. Simulation results verify that the drastic
fluctuation of bandwidth demand can be -effectively
flattened compared to other heuristic algorithms such as
flat-rate pricing and uniform pricing. It is observed that
the incorporation of price discrimination can significantly
increase the profit of the NSP and reduce the network
PATR.

The remainder of this paper is organized as follows.
Section II provides a comprehensive literature review. Section
III introduces the system model. Section IV describes the
Stackelberg game formulation. Section V presents the optimal
pricing design with complete information. Section VI presents
the optimal pricing design with incomplete information.
Section VI-B provides the numerical results. Finally, section
VIII concludes this paper.

II. RELATED WORKS

SDN provides an open and programmable platform to
implement policies of smart bandwidth slicing. Due to the
promising features, numerous researchers have already studied
SDN-enabled bandwidth slicing. In [14], Yiakoumis et al.
proposed the concept of bandwidth slicing in software-defined
wired networks, where bandwidth is virtually split into
multiple slices for dedicated usage of different services. A
similar idea was mentioned in [15], where Radhakrishnan
et al. proposed NetShare to enable predictable bandwidth
allocation for different services without changing the hardware
of switches or routers. In [16], Ksentini ef al. proposed
a programmable framework to enable network slicing
based on 3GPP dedicated core networks (DCNs) and a
two-level medium access control (MAC) scheduler to facilitate
physical resource abstraction and sharing. In [17], Li et al.
proposed a SDN-based framework for machine-to-machine
(M2M) communications. A feedback and control loop
which dynamically adjusts resource allocation based on the
performance gap was developed to address the random access
problem. SDN-based bandwidth slicing was extended to 5G
cellular networks [7], and a resource-slicing based architecture
was proposed to enable mobility management, power control,
and subchannel allocation.

When studying SDN-enabled bandwidth slicing, the
domain-specific challenges of SDN such as scalability and
consistency problems have to be considered. Namely, as
the number of flows increases in SDN, it takes a large
amount of time for the controller to handle all the control
functionalities. Consequently, the controller might become the
bottleneck of the whole system. One way to alleviate the
scalability problem is to reduce the load on the controller.
For instance, in DevoFlow [18], only large flows are
forwarded to the controller for coordination, while other
short-lived flows are handled in the data plane locally. This
way, the amount of requests forwarded to the controller
could be significantly reduced. However, the main drawback
of this approach is that it imposes modifications to the
existing SDN architecture, i.e., it raises new concerns about
consistency. Some research attempts try to alleviate both

the scalability and consistency problems by distributing the
control functionality across hierarchical controllers. In Kandoo
[19], the control functionalities that require network-wide
coordination are handled by a root controller, while the
others are handled by local controllers. Therefore, Kandoo
can preserve scalability without changing the design of SDN
switches. Nevertheless, retaining network state consistency
through frequent propagation of state updates will introduce
unbearable signaling overhead between the controllers and
switches. Another thread of research attempts focuses on using
economic approaches such as pricing to control the bandwidth
demands and regulate link access behaviors of users. For
instance, given a well-designed congestion price, users can
autonomously adjust their bandwidth demands to avoid the
high congestion costs from the perspective of individual profit
maximization. There already exist some studies on the design
and optimization of pricing strategies [20], [21]. Flat-rate
pricing has long been the prevailing pricing model for both
wired and wireless networks due to its simplicity [22]. The
drawback is that light users cannot be distinguished from
heavy users, which implicitly forces light users to subsidize
heavy users.

Since May 2011, worldwide NSPs, such as AT&T, Comcast,
etc., have started to impose a data cap (i.e., an amount of data
that can be used during a certain period of time) on users and
charge a penalty as long as the usage exceeds a pre-defined
limit [23]. This mechanism is named usage-based pricing
(UBP). Furthermore, with the emergence of mobile virtual
network operators (MVNOs), some hybrid UBP schemes start
to play an important role in real-world network operations.
For example, Karma [24] designed a UBP scheme by offering
a fixed reimbursement to its subscribers when they share their
Internet connectivity to other nonsubscribers in the vicinity. In
[25], Tosifidis et al. extended the Karma model by adjusting
the reimbursement according to the amount of traffic that a
subscriber actually forwards. UBP is efficient in controlling the
total data usage for a certain period of time, but inefficient in
resolving the peak-time congestion unless the price is charged
in accordance with the real-time network congestion level.

By incorporating the information of temporal dimension,
TDP has emerged as a promising solution for peak-time
traffic management [10], [11]. Specifically, TDP addresses the
peak-time congestion problem by charging users according to
both the amount of bandwidth required and the time of usage.
It can effectively flatten out the peak-time traffic demand and
improve the overall bandwidth utilization efficiency [26].

TDP has received intensive research interest from both
academia and industry. Jiang et al. proposed a TDP scheme
to optimize the NSP’s revenue in a monopoly market, and
proved that if the NSP has full information about the users’
utilities, the revenue-optimizing TDP also results in social
welfare optimization [27]. In [28], Zhang et al. extended the
analysis of TDP from the monopoly market to an oligopoly
market, and developed a game-theoretic approach to solve the
revenue optimization problem. In [29], Wong et al. proposed
a novel day-ahead pricing (DAP) scheme by considering
the feasibility of creating time-dependent charging model for
real-world deployment, where prices are determined based



upon historical traffic load, and are offered to users on a
day-ahead basis. The feasibility and benefits of adopting TDP
and DAP were extensively discussed in [30]-[32]. In [33],
Ding et al. demonstrated that a unified TDP used by a whole
network achieves poor performance for specific locations, and
hence proposed a TDP for large-scale mobile networks by
combining both spatial and temporal traffic patterns. In [34],
Ma et al. formulated the payoff optimization problem of both
the NSP and users as a two-stage decision process, and then
derived an optimal time and location aware pricing scheme
by solving the optimization problem. Nevertheless, the more
practical scenario of incomplete information is neglected in
[34] and [33]. In [35], Ha et al. presented an end-to-end
TDP system named TUBE, in which a pricing-based feedback
control loop is created between NSP and users. In [36], Sen et
al. developed a framework of dynamic day-ahead TDP based
on NSP’s costs as well as users’ usage volumes and delay
willingness. Two real-world trials demonstrate that TDP can
effectively incentivize users to adjust their usage demands
and increase NSP’s revenue with multimedia-rich applications.
Both [35] and [36] adopt the simplified uniform pricing
approach without considering price discrimination.

Different from the work mentioned above, we jointly
consider pricing and bandwidth demand optimization in
software-defined cellular networks, under the scenarios of
both complete and incomplete information. Particularly, we
emphasize on how to derive the optimal pricing strategy by
using only the statistical information of users’ preferences.
Furthermore, we extend the previous results from the
simplified case of a single congested link to the more
complicated case of multiple congested links, where the
optimal price of a congested link depends on the prices
imposed on other congested links. To provide a tractable
solution, we explore the variational inequality theory and
propose a gradient-based iterative pricing scheme which
converges to the optimal strategy.

Our work is different from the standard Stackelberg
game based pricing schemes [37]-[40] due to information
asymmetry and price discrimination. The details are elaborated
as follows. First, different from the standard Stackelberg
game where the leader has the perfect knowledge of
followers’ information, we investigate the more practical
incomplete information scenario where the leader possesses
only the statistical information of followers. With information
asymmetry, the best response strategies of users are not
deterministic, and the optimal pricing has to be derived
based on a stochastic modeling approach. Second, for the
case of multiple congested links, the formulated optimization
problems with price discrimination are NP-hard. We propose
two iterative heuristic algorithms to find the optimal solution,
and provide rigorous property analysis for convergence,
computational complexity, and uniqueness.

III. SYSTEM MODEL

Fig. 1 shows the architecture of a software-defined cellular
network. It consists of three layers: a control layer, a data
forwarding layer, and a user layer. In the control layer, a

Control Layer

Pricel Demand

Data Forwarding Layer |

Pricel Demand

User Layer

o °

]

Fig. 1. Architecture of a software-defined cellular network.

centralized controller with a network-wide view takes charge
of all control logic and enforces pricing policies by decoupling
the network control functions from data delivery. The data
forwarding layer contains various routers and base stations,
which are responsible for forwarding multimedia data to users.
In the user layer, there are multiple users who send (or fetch) a
large amount of data to (or from) the multimedia servers. The
path between each user and its destination server is composed
of a set of logical links. That is, the data traffic of a user
has to go through a set of logical links in order to reach its
destination.

The overall negotiation and pricing procedure is composed
of three stages. In the first stage, each user notifies its
bandwidth requirement to the controller in an on-demand
manner. In the second stage, the controller sets the congestion
price of each logical link according to the bandwidth demand
reflecting its congestion level. Note that the congestion price
could be zero in the case that the link capacity is sufficient to
meet the bandwidth demand (i.e., no congestion exists). Then,
the congestion prices are broadcasted to users through the data
forwarding layer. In the final stage, each user independently
determines whether to defer its traffic or not upon receiving
the corresponding congestion price. The users’ decisions are
fed back to the controller enabling it to dynamically adjust
the bandwidth slicing based on the feedback. It is noted
that in practical implementation, the users do not have to
be involved in bandwidth demand submission and decision
making. Alternatively, the proposed joint bandwidth slicing
and pricing algorithm can be programmed as a software to
autonomously collect bandwidth demands and make delay
decisions. This way, the burden of decision making of users
can be alleviated.

We assume that the network is composed of a set of logical
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Fig. 2. Illustration of the congested link.

links (wired or wireless) denoted by L, and a set of multimedia
application users denoted by S. A total amount of bandwidth
By is reserved on each link [ € L for multimedia applications
while the residual bandwidth is utilized by other types of
applications. In this paper, we mainly focus on link congestion
caused by multimedia applications. We henceforth refer to
the multimedia application users as users, and the bandwidth
reserved for multimedia applications as available bandwidth
for simplicity.

Time is divided into slots. The length of each time slot
is defined as 7. In slot ¢, the set of links which are used
to transmit the data traffic of user s is denoted as L.(s),

e., Li(s) C L. Moreover, the set of users whose traffic
traverses link [ is denoted as St(l), S¢(I) C S. The bandwidth
requirement of user s is defined as 5", Vs € S. In slot ¢, link
! is marked as the congested link if the available bandwidth
of link [ is insufficient to satisfy the bandwidth demands of
all users on it, i.e., Zses,,(l) s> B.

An example is shown in Fig. 2. Among the three links,
link 2 is a congested link. Then, the corresponding slot ¢ is
marked as a peak-time slot for user 1 and user 3, whose traffic
traverses link 2.

Since we have not made specific assumptions for the
employed routing scheme, the proposed scheme is compatible
with other dynamic routing schemes as long as S;(I) remains
constant during slot ¢. The joint optimization of routing,
pricing, and bandwidth slicing is a new challenging topic. It
is beyond the scope of this work and will be studied in the
future.

The centralized controller monitors the bandwidth demand
on each link, and notifies the users of a congestion price to be
imposed on them as long as they stay connected during peak
time. Note that the nonnegative congestion prices {p;:}iecr
are the variables to be optimized by the NSP. For each user
s, the overall penalty imposed on it in slot ¢ is calculated as

> prakr. (1)

leL(s)

If the penalty is heavy enough, rational users may voluntarily
defer their traffic (or bandwidth demand equivalently) in
order to avoid the congestion cost in the peak time. As a
result, peak-time congestion can be alleviated. Considering the
contradictory interest between the NSP and users, the joint
optimization problem of congestion pricing and bandwidth

TABLE I
A SUMMARY OF THE MAIN NOTATIONS.

Notation Description
DLt Unit congestion price of link / in slot ¢
Ps ¢ Additional payment of user s if he/she stays connected
in slot ¢
L Set of logical links (wired or wireless)
[L] Number of links in L
B Maximum available bandwidth of link [
50 Bandwidth required by user s
T Slot length
ds Time delay of user s
Cs(ds) Delay cost of user s when the streaming service is
delayed by ds.
Cs(ds, T) Marginal delay cost of user s the traffic of which is

further deferred by one slot

0s User-dependent factor indicating the scale of its utility
function (i.e., delay sensitivity)

bs,t Indicator for the response of user s in slot ¢

Si(l) Set of users on link ! in slot ¢

Sit(l) N S¢(n) | Set of users, the traffic of which traverses both link {

and link n in slot ¢t

Bemand (4, 1) | Bandwidth demand on link [ in slot ¢

Dy Optimal congestion price of slot ¢

slicing can be formulated by using a game-theoretical
approach. The details are elaborated in the next section.

A summary of the main notations used throughout the paper
is given in TABLE L.

IV. STACKELBERG GAME FORMULATION

A. Game Formulation

In this section, a Stackelberg leader-follower game is
formulated to model the competitive interaction between the
NSP and users [10]. The Stackelberg game is a strategic game
in which a leader player chooses its strategy first and then other
followers move accordingly. In this work, the NSP is the leader
that decides the congestion price of each link, i.e., {p;}icL,
and the users are the followers that determine whether to defer
their traffic or not based on {p;+}icrL.

We assume that both the NSP and the users are rational
decision makers [41]. Let b, ; be the response indicator which
is defined as follows: bs; = 1 if user s stays connected in
slot ¢; or by = 0 if user s chooses to defer its traffic in
slot ¢. Denote the response set of all users except user s
as b—s,t~ Namely, b—s,t = {bl,ta ceny bs—l,ta bs+1,t; veey b|St\,t}7
where |S;| is the number of users in set S;. The Stackelberg
leader-follower game can be described by a tuple G(Player,
Strategy, Payoff), which is elaborated as follows:

o Player: The NSP is the leader and the multimedia
application users are the followers.

« Strategy: For the NSP, the strategy is the selection of p; ;
for each link [ in time slot ¢. For each user s, the strategy
is the decision on whether to defer its traffic or not given
YURD i.e., bs,t-

o Payoff: For the NSP, the payoff is the revenue
gain denoted by I™P({p; }icr, {bs;t}scs): for a
user s, the payoff is the net benefit denoted by
II, (bs,ty b—s,ta {pl,t}leLt(s))-



The optimal strategies of the NSP and users, i.e., ({p}‘,t}le L
{b% 1}ses), constitute a Stackelberg equilibrium, in which no
player can improve its benefit by changing its own strategy
unilaterally. In other words, each player chooses the best
(locally optimal) response to the strategies adopted by other
players [42].

The objective is to find the Stackelberg equilibrium, which
is defined as follows:

Definition 1. ({pit}leL,{b:,t}ses) is a Stackelberg

equilibrium if for any {p;+}ier and {bs}ses, we have

I ({pf hier 0% bses) > T ({pratier, {b5 }ses)

I (b5 45 0% ¢ APl hier.(s) = Walbst, 07 4, APT i hieL.(s))
()

where b* ; , denotes the optimal value of b_s ;.

B. Users’ Delay Sensitivities

The delay plays an important role in evaluating the users’
satisfaction over the multimedia services. Therefore, we model
the utility of a user as a function of delay. Specifically, the cost
of user s when its traffic is deferred by a period of d; is defined
as Cs(ds), which is calculated as

CS(dS) = HSf(ds)v 3)

where 6, is a user-dependent factor indicating the scale of
its utility function, i.e., the delay sensitivities. Due to the
heterogeneous delay sensitivities of users, the cost of the
same delay period dg perceived by different users may vary
dramatically. Furthermore, f(-) is the delay cost function,
which is assumed to be strictly increasing and convex [27],
ie.,

Co(dy) > Cy(dy), Vd, > d, )
and
Co(d, +7) — Co(d,) > Cylds +7) — Cs(dy), Vd, > ds,
(5)

where 7 is the slot length.

For the sake of simplicity, we adopt an exponential function
as the delay cost function f(.), which meets the requirements
of strictly increasing and convex [43]. The derived result can
also be extended to other delay functions which are strictly
increasing and convex.

Thus, the delay cost function is rewritten as

Cs(ds) = b5 exp(ds). (6)

Let és(ds,T) represent the marginal delay cost of user
s when the traffic is further deferred by one slot, which is
calculated as

Cy(ds, ) = 05 [exp(ds + 7) — exp(ds)] - @)

Intuitively, user s will defer its traffic if the peak-time cost
saving is sufficient to compensate for the marginal cost of
the traffic delay, i.e., ZlELt(s) pri®s T > Cs(ds, T); or stay
connected otherwise.

We do not assume that the bandwidth in the next time slot
is sufficient. As shown in (6) and (7), the delay period d; is
accumulative over time. Furthermore, the potential delay in
the future is taken into account in the sense that the marginal
delay cost increases with the increasing of d,, and a user with
a larger marginal delay cost is more likely to defer its traffic
given the same peak-time cost.

V. COMPLETE INFORMATION SCENARIO

In this section, we investigate the scenario of complete
information, i.e., the NSP has perfect knowledge of all the
users’ delay sensitivities ({6s}scs). First, we study the simple
case of a single congested link, and derive a closed-form
expression of the optimal pricing strategy. Then, we extend
the discussion to the more complicated case of multiple
congested links, and propose a heuristic iterative algorithm
by considering a price discrimination.

A. Single Congested Link

Let link [ be the congested link. We adopt the backward
induction approach and begin the analysis from the second
stage. In the second stage, upon receiving p; ¢, user s € Sy (1)
chooses to stay connected if p; ;251 < Cs(ds, 7), or to defer
its traffic for a slot otherwise.

The optimization problem of user s is formulated as

P1 ZIilaX Hs(bs7t7pl,t) = bs,t(cs(d87 T) - pl7t$;eq7')- (8)

Formally, the best response of user s is described as

. 1, if p st < és(ds, T)
ot = . )
’ 0, otherwise
Then, the optimal net benefit of user s is given as
* 6’5 dsaT — D IgeqT, if bz =1
(0% 45 p1,t) = (d; ) = pue S0 (10)
’ 0, otherwise
Equation (10) can be rewritten as
~ +
W08 pne) = (Culdeym) = praa®®s) -, (D)

where (-)T = max(,0).

In the first stage, the pricing strategy of the NSP is to
maximize the total revenue received from the set of users
whose traffic traverses the congested link /, i.e., S;(I). When
all the users choose the best response, the total revenue of the
NSP is given by

I (1o, b2 Yseso) = > pazirhl,.  (12)
s€S(l)
The pricing problem of the NSP is formulated as
P2 :max I (pre, {b1,}),
Pi,t ’
S.t. Cl : Z xgeqb;t < Bl7
s€S (1)
Cy:ipry > 0. (13)



Here, C; denotes the capacity constraint that the bandwidth
slicing must be satisfied. C implies that the congestion price
must be nonnegative.

With the complete information about the users’ delay
sensitivities, the NSP can first sort the users in set S¢(l) in a
descending order based on their net benefit values if they stay
connected, i.e., bs; = 1,Vs € Sy(I), as

Oy (1, pre) > Ma(1,pre) > oo > s, ) (L, 1) (14)

Suppose that the available bandwidth B; is insufficient to
simultaneously satisfy the bandwidth demands of all the users
in set S;(!) in slot t. Let s € Sy(I) be a critical user such

D 2.

s€{l,--,s'} s€{l,---,s",s'+1}

The optimal pricing strategy p;, of the NSP is to take

away all the surplus of user s’ while meeting the bandwidth
constraint. Let bs’,t =1, we have

253 < By and z$l > By.

15)

Hs/(]‘?p?:t) :6sl(ds/77) Y2 tmreqT
=0, [exp(dy + 7) — exp(dy )] —p;itacf,qr (16)
=0.

By solving (16), pj, is derived as

0, lexp(dy + 1) — exp(d
oy + 1) —evd)

el
.CET

*
P =

B. Multiple Congested Links

In this subsection, we extend the above analysis to the case
of multiple congested links. In the second stage, for user s €
S;(l) whose traffic traverses a set of links L;(s), the price
penalty is defined in (1). The optimization problem of user s
is formulated as

P3  max Hs(bs,tv {Pritier.(s)

=bst(Colds, ) = ) praain). (18)
leL(s)
The best response of user s is described as
. L if 3 e, o PLazstr < Cu(ds, 7)
st = - (19)
’ 0, otherwise
Then, the maximal net benefit of user s is given as
(b5 ¢ {prehier,s)) =
Colds, ) = Diep, o Praws 7 b =1 )
0, otherwise
Equation (20) can be rewritten as
+
(0% o Apuiheros) = | Cslde,7) = Y praair
leL(s)
2D

In the first stage, the price of each congested link is
determined based on its congestion levels by adopting a price
discrimination. Given the second-stage best response of all
users defined in (19), the revenue of the NSP is given as

follows:
=Y Y paairhy,

HNSP({Pl,t}leLa {b:,t}ses) (22)
leL seS:(1)

The optimal congestion price {pj,;}icr in slot ¢ can be
derived by solving the following optimization problem:

P4: max I({prihier, {5, }ses),
{Pl,t}leL
st Cy: Y afW, < B,VielL,

s€SL(1)

Cy:pir>0,Vle L. (23)

P4 is non-convex as it involves b7,, which is a
non-continuous non-differentiable function of {pit}ier [44].

Therefore, we propose an iterative heuristic solution which
is summarized in Algorithm 1. It consists of an initialization
stage, followed by multiple iterations of price rising. In each
iteration, the most congested link n can be found by comparing
the gap between the total bandwidth demand and the available
bandwidth. Then we increase the congestion price of link n by
a small perturbation Ap, and update the traffic demand on link
n accordingly. The algorithm terminates when no congested
link exists.

Herein, we analyze the proposed algorithm in terms of its
convergence and computational complexity.

Theorem 1. Algorithm 1 will eventually terminate.

Proof. Theorem 1 can be proved by contradiction. In each
iteration, the congestion price is increased by Ap. Suppose
that Algorithm 1 will not terminate, namely, there always
exists a link [ that Bd‘“““lnd > By, then the congestion price of
link [ will eventually increase to infinity, which forces b; , =
0,Vs € Si(I). As aresult, B{"¢ = 0, which contradicts with
the initial hypothesis. O

Theorem 2. Algorithm 1 has a computational complexity of
O(K x |L| x |S)).

Proof. Algorithm 1 runs iteratively to obtain the desired
congestion prices. It can be seen that there are at most K
iterations. Within each iteration, the complexity is composed
of two parts: (i) the subproblem of finding the most congested
link with the complexity of O(|L|log|L|); and (ii) the
traffic demand is updated with the complexity of O(|L| x
|S|). Therefore, the overall complexity of each iteration

O(|L|log|L|) + O(JL| x |S]). We neglect the term
O(|L|log|L|) as it is much smaller than O(|L| x |S|). As
a result, the total complexity of the proposed algorithm is
approximately K x O(]L|x|S|), namely, O(K x|L|x|S]). O

VI. INCOMPLETE INFORMATION SCENARIO

In this section, we consider the incomplete information
scenario, where 65 is only known to user s, while the
NSP only has the statistical information of 6, via historical



Algorithm 1 The price-rising based heuristic solution.

1: Inputs:
By, Vl € L; x5, Vs € S(1);05,Vs € S(1)
2: Outputs:
bs,t,Vs S St(l);pl’t,Vl eL
3: Step 1: Initialization
4: for s =1 to |S¢(1)| do
5: bt =1
6: end for
7. for [ =1 to |L| do
8 Pt <=0
900 B =3 s,y 75
10: end for
11: Step 2: Congestion Price Update
12: while 3! that Bﬁimand > B; do
13: Find n such that ij‘t“a“d -B, > ngj';a"d —B,,,Vm #
n;
14: Update the congestion price: py, ; <= ppt + Ap
15: while 3s € S;(I) that user s voluntarily defers the
traffic do
16: bst <=0
17: end while
18: Update traffic demand on link [ Bf;ma“d =
Zsest(n bs, s
19: end while

observation. Thus, the information of 6 is asymmetric. We
will demonstrate how to derive the optimal pricing strategy
for the NSP under information asymmetry.

A. Single congested link

Let link [ be the single congested link. Given the price p; ¢,
the best response of any user s € Sy(l) is exactly the same as
(9). Without the complete information of the delay sensitivity
0, of user s, the NSP cannot directly derive the best response
b - Instead, it has to infer the probability that user s stays
connected in slot ¢, i.e., P(b}, = 1), which is given by

P(b:,t = 1) = P(pl,tx;eqT < és(dsa'r))
= P (pr 37 < 05 [exp(ds + 7) — exp(d,)])
req
PLtTs T
=Pl0O, > d .
( T exp(ds + 1) — exp(ds)>

Without loss of generality, we assume that the delay
sensitivity 0,,Vs € Si(I) is independently and uniformly
distributed in the range of [0, #™*]. We assume that §™%*
satisfies the following inequality:

(24)

req
max PLt¥s T

h exp(ds + T) - exp(ds)

Vse S(l). (295
Otherwise, the probability P(b;, = 1) might become a
negative value, which has no practical meaning.

Hence, P(b;; = 1) can be rewritten as

req
PitTs T

- @max (eXp(ds + T) — eXp(ds)) ’

P, =1) =1 (26)

The above equation indicates that P (b}, = 1) is negatively
related to p; ¢, o5, and ds.
The expected revenue of the NSP can be given as follows:

I (pre, {P(V7, = 1 }sesom)

= Z Pt TP(bs, = 1).
s€SL(1)

27)

The optimal congestion price p;, in slot ¢ is derived by
solving the following problem:

P5 :max I (o1 (P(0], = Dses,):

S.t. Cg DLt 2 O,

Cs: Y 2P, =1)< B,
s€SL(l)

(28)

where Cs implies that the constraint is the expected bandwidth
demand.

Taking (26) into C5, we can derive the upper bound of p; ¢,
which is given by

req
ZsESt (l) Ls Bl min

pue > e = o, (29)
Zsest(l) x50
where e
T T
s = . 30
s = gmax (exp(ds + 7) — exp(ds)) (30)
Eventually, P5 can be transformed to a quadratic

programming problem, which is given by

P6 :max E praxy T (1 — Uspl,t),
Pi,t
seSt(l)

st.  Coip >0,
Co : e > pi. 31)

Since the objective function is quadratic and the constraints
are affine, pj, can be derived as
[Se(D)] min

[S: (D] ;
if >
D= {QZSESW) os’ 22 ces,) s Pt

(32)

o otherwise
.

B. Multiple congested links

In the case of multiple congested links, the best response
and the maximum net benefit of any user s € S are the same
as what have been derived in (19) and (20).

In the fist stage, the NSP infers P(b;;, = 1) as

P(bZ,t = 1)

=P( Z praxdT < élg(ds,T))
leL(s)

=P Z PraxdT < 0, [exp(ds + 1) — exp(dy)]

leL(s)
P60 > ZlELt(s) plvtxr:qT
N * = exp(ds + 1) —exp(ds) |

(33)



ISP ({pr e hier, {P(b:; = 1)}ses)
8pl,t

s€S, (1)

IOEEDD

ne€L,n#l s€S(1)NS¢(n)

a HN ({pl.t}leLa{l (b:t 1)}565)
’ : Z exp(d. — 1) — exp d
D( 5 ) ( s)

82pl,t

(aredr)?
Z 2 T — Z Z Pt + Dit)—
s€S(1) eXp(d B T) B eXp mGL (s)
(areory?
.t 34
exp(ds — 1) — exp(ds)p & (34
2(gred 2
(2:7) <. (35)

seS(l)

Following the same assumption of d,,Vs € S¢(I) as shown
in the previous subsection, P(b}, = 1) can be rewritten as

req
ZlELt(s) PitTs T

Pb:,=1)=1- . 36
(bs.s ) Omax (exp(ds + 7) — exp(ds)) (36)
The expected revenue of the NSP can be given as
I ({pehier, {P(bs; = 1)}ses)
=3 > paarPb;, =1). (37)

leL seSq(l)

Then the optimal congestion price p;, in slot ¢ is derived
by solving the following problem:

max IV ({pyshier, {P(b:, = 1)}ses),
{p1,e }ieL

st. Cy:ipy>0,VleL,

Cr: Y a™MP(M, =1)<B.VieL
seS(l)

P7:

(38)

By analyzing the objective function of P7, we have

Theorem 3. TI"?({p;; }iep, {P(b%, = 1)}ses) is concave
with regards to any p;4,Vl € L.

Proof. The first-order derivative and the second-order
derivative of the objective function IIN?({p; ; }er, {P (b, =
1)}ses) with respect to p;; are shown in (34) and (35),
respectively. Since the second-order derivative is negative,
ISP ({preher, {P(b;; = 1)}ses) is concave with regards
to pi ¢ O

By observing (34), we conclude that P7 is NP-hard since
the congestion prices of different links are coupled together.
In the following, we analyze how to find the optimal pricing
strategy for the NSP.

Since TIN*({py ;1 }1er, {P(b}, = 1)}ses) is concave with
respect to p; ¢, we can transform problem P7 into a variational
inequality problem, from which the uniqueness of the optimal
pricing strategy is guaranteed.

Defining the set K = {pithier |
ZseSt(l) zs'P(bi, =1) < Bi,p,e > 0,9Vl € L}, then
the equivalent problem of P7 is given by

min —II

SP({pl,t}leL, {P(b:,t = 1)}565),
{p1,t}ier

st. Cg:p€ K,VleL.

P8

(39)

According to the variational inequality theory [45], solving
P8 is equivalent to finding a set of prices {p},}icr which
satisfies

({prehier — {piihier) F {piehier) > 0,9{pri }ier, (40)

where

F({pther)
=V (- ({pri}ier, {P(;; = 1)}ses))
- {Vpl,tH ({pl t}lELv {P( gt 1)}565)}ZEL7

({pl,t}leL - {pit}zeL) F ({pi,t}ier) represents the
element-wise difference between {p; }icr, and {p;t}le L.
The problem defined in (40) falls into the category of
variational inequality problem, and can be abbreviated as
VI(K,F). Based on [45], VI(K,F) has the following

property:

(41)

Here,

Theorem 4. If K is a convex closed set, and the continuous
function F' is strictly monotone on K, then VI(K, F') admits
at most one solution.

Proof. The proof is omitted here due to the space limitation.
A similar proof can be found in [45]. O

Theorem 5. For the variation inequality problem VI(K, F),
F' is strictly monotone on K.

Proof. To prove that F is strictly monotone on K, we choose
two solution sets from set K, i.e., {p, ;}ier, {p;, t}leL €K,

{Pl tYieL # {pl t}leL, and check the positivity of ({pl t}leL—
{plt}leL) (F ({Pz tfier) — ({Pl t}IGL)) which is given by

({pritier — {pihier) T (F(puhier) — FUpiiher)) =

Z ((Pl,t - Pl,t) ( =, + Vp, tHNSPp;/)) .

leL
(42)

\V4 HNSP

DPi,t

Since the second-order derivative of the objective function
ISP ({pri e, {P(b5, = 1)}ses) with respect to py; is
negative according to (35), we can draw the conclusion that
V... TN is a monotonically decreasing function of p ;, while
—V ... 1IN is a monotonically increasing function of py ;.

Thus, we have

NSP
_pl t

> O ’ > "
~Vp, IO = Py = Py
S Ovpl,t S pl7t

r+ VI (43)

t=Py¢



Algorithm 2 Gradient-based iterative pricing algorithm.
1: Inputs:

By, Vl € L; x5, Vs € S(1);0,,Vs €

S:(l), K
Outputs:

zs’t,Vs S St(l);pl’DVZ eL
3: Step 1: Initialization
4: for s =1 to |S¢(1)| do
5: zZet <=1
6: end for
7
8
9

»

:forl=1to |L| do
pit <=0
. B?;mand ~= Zsest o Jfrseq
10: end for
11: Step 2: Congestion Price Update
12: while 3! that Bﬁim"‘“d > B; do
13: Find n such that Bfﬁ?fmd -B, > ngjga"d — By, Ym #

n;
14: Set 7 <= 1, precision threshold ¢
. il _pli-1]
15: while ”pHp[ﬁquHl > ¢ do
16: Update the congestion price by a gradient assisted

searching algorithm: p; ; <= p; ¢ + AVIINF (p; ;)

17: where X is the step size of the price update.

18: 1<=i+1

19: end while

20 while 3s € S;(I) that user s voluntarily defers the
traffic do

21: zst <=0

22: end while

23: Update traffic demand on link [ Bﬁi‘“a“d

req
Zsest(Z) Zs,tLs
24: end while

=

For any link [ € L, we can prove that

’ " NSP
Z ((pz,t - pl,t) (—sz,tnpl't_p;’t

leL
(44)

This proves that F' is strictly monotone on K. O

Thus, by combining Theorem 4 and Theorem 5, we can
prove that VI(K, F') admits at most one solution. Thus, the
equivalent optimization problem P8 also admits at most one
solution. The uniqueness of the optimal solution is hence
validated.

Similar to Algorithm 1 developed in Section V, we develop
an iterative price-rising algorithm to find the optimal solution.
Since the objective function of P7 is concave with regards to
p1,¢, We can augment the price-rising part with a gradient-based
searching algorithm to improve the convergence speed. The
gradient-based iterative pricing algorithm is summarized in
Algorithm 2.

Herein, we analyze the proposed algorithm in terms of its
computational complexity.

Theorem 6. Algorithm 2 has a computational complexity of
O(C + |L| x |S)).

+V,p, TSP, >> > 0.
> P1,t=P; ¢+

TABLE II

A SUMMARY OF THE SIMULATION PARAMETERS.
Average session duration 1 hour
Delay sensitivity (6) [0,1]
Bandwidth requirement of user s (x5 ) | [90,320] Mbps
Available bandwidth of link [ (B;) 12 Gbps
Slot length (7) 0.05 hour
Number of users 100/10000
User-dependent factor (6) (0,1)
Price perturbation (Ap) 0.0005
Threshold () 0.001
Step size (\) 0.001

Proof. Algorithm 2 runs in a gradient descent manner to
obtain the desired congestion prices. Because we have proved
that problem P7 has at most one solution in Theorem 4, there
will be at most C' descent processes to obtain an optimal
solution. Within each time slot, the complexity is composed of
three parts: (i) the subproblem of finding the most congested
link with the complexity of O(|L|log |L|); (ii) the subproblem
of calculating the congestion prices of a specific congested link
with the complexity of O(C); and (iii) the traffic demand is
updated with the complexity of O(|L| x |S]). Therefore, the
overall complexity is O(|L|log |L|) + O(C) + O(|L| x |S|).
We neglect the term O(|L|log|L|) as it is much smaller
than O(|L| x |S|). As a result, the total complexity of the
proposed algorithm is approximately C' + |L| x |S], namely,
O(C + |L| x |S]). O

It is noted that the optimization is carried out from the
perspective of “expectation” due to information asymmetry,
where the hard constraint of bandwidth capacity cannot be
reliably guaranteed. To address this challenge, we modify
Algorithm 2 to satisfy the hard constraint of bandwidth
capacity. Specifically, when the total bandwidth demand
exceeds the maximum available bandwidth, Algorithm 2
will continue to increase the congestion price until the
bandwidth demand is satisfied based on Line 12. Therefore,
Algorithm 2 is a robust suboptimal pricing strategy, which
provides a flexible tradeoff between optimality and robustness.
Furthermore, the core concept of price rising enables the users
with the least delay cost to defer their bandwidth demands. We
will also demonstrate that the performance loss compared with
the optimal algorithm is negligible via simulation results.

The proposed scheme is implemented in a slot-by-slot
fashion, and can be easily implemented online since it does
not require any noncausal knowledge of future information.
We do not consider the joint bandwidth slicing and pricing
optimization due to the following reasons. First, the noncausal
knowledge of future information is required for decision
making. For instance, in [35], a set of future day-ahead prices
is given as a priori information. This is different from our work
since we assume that the future information is unavailable.
Second, some previous works of long-period decision making
[46] only consider either bandwidth slicing or pricing. They
cannot be directly applied in our model. Due to the bursty
network traffic and uncertain real-time prices, not only the
bandwidth slicing strategies and pricing strategies of the same
slot are coupled, but also the bandwidth slicing strategies



or pricing strategies of different slots are coupled. How to
solve such a complicated problem is still nontrivial. Last
but not least, conventional research attempts [47], [48] rely
on some assumptions that the uncertain parameters follow
some well-known probability such as Markov and Poisson
distributions. They may suffer from severe performance loss
if the practical probability distributions of uncertain factors
disagree from the presumed statistical models. In comparison,
we have not made any preassumption on the statistical model
of traffic arrival or link congestion state.

VII. NUMERICAL ANALYSIS

We search the “Information and Communication Statistics
Database” issued by Japanese government [49] and perform
simulations based on the statistics usage data of Internet. More
details can be found in [49]. We assume that session durations
follow an exponential distribution with an average value of 1
hour. Detailed simulation parameters are summarized in Table
II.

For comparison purposes, we implement and compare:
(i) the uniform pricing where the NSP charges a uniform
congestion price for all the congested links during a certain
time slot, while the uniform congestion price may vary from
one slot to another [12]; (ii) the dynamic TDP (DTDP) scheme
where the prices are calculated according to the type of session
through a Monte Carlo Method-based algorithm [33]; (iii)
the flat rate pricing scheme where the NSP charges a fixed
congestion price for all the congested links during the entire
peak time [50]. In particular, we exhaustively try all feasible
prices and find that the optimal flat-rate price for the NSP
is 0.45, ie., p;r = 0.45,Vl € L,Vt; and (iv) the proposed
pricing scheme.

Fig. 3 depicts the traffic demand versus the time slot
with multiple congested links with 10* users. It can be
observed that the proposed schemes can largely reduce the
traffic demand during the typical peak time compared to other
schemes under both complete and incomplete information
scenarios. Compared to the original bandwidth demand, the
peak-time traffic demand is reduced by 20.66% and 27.39%
under complete and incomplete information, respectively. The
rational behind is that the NSP is able to determine an
appropriate congestion price based on the congestion level as
well as users’ preference, which improves the utilization of the
bandwidth while guaranteeing the QoS requirements of users.
The peak shaving effect is achieved by shifting the traffic
demand from peak time to off-peak time, which is evidenced
by the fact that the traffic demand of the proposed scheme is
lower than that of other schemes during the typical peak time,
but higher during the typical off-peak time.

Fig. 4 shows the revenue versus the time slot with multiple
congested links with 10* users. The proposed algorithm
outperforms uniform pricing by 115.75% under incomplete
information, and outperforms uniform pricing, optimal flat
rate pricing and DTDP by 43.95%, 230.79%, and 22.77%,
respectively. It can be easily observed that: (i) the NSP’s
revenue increases with the time slot; and (ii) there is a large
gap between the revenue achieved under complete information

and that under incomplete information. The reasons are as
follows: (i) the increase in demand during peak time increases
the congestion price, hence resulting in a higher revenue of
the NSP; and (ii) with the prefect knowledge about users’
preference, the NSP can improve its revenue by setting
congestion prices that exactly take away all the surplus of
users.

Fig. 5 shows the net benefit of users versus the time
slot with multiple congested links with 102 users. It can
be observed that the user net benefit under incomplete
information outperforms that under complete information. The
rationale behind is that the NSP can take away all the surplus
with the prefect knowledge about users’ preference (e.g.,
6s). Hence, information asymmetry actually increases users’
net benefit and protects them from being over exploited.
Although uniform pricing achieves the best performance under
incomplete information, its performance of cumulative NSP
revenue is much worse than that of the proposed scheme.
Details will be explained in the next figure.

Fig. 6 depicts the revenue versus the number of users
with multiple congested links with 10? users. Simulation
results demonstrate that the NSP’s revenue increases with
the number of users. The reasons are as follows: (i) the
competition for bandwidth gets more intensive as the number
of users increase. As a result, a user has to bear a higher
congestion price in order to remain connected during the
peak time, which leads to a higher revenue of the NSP; (ii)
given the fixed congestion price, the revenue of the NSP is
also positively correlated with the number of users. Hence,
the more users participating in the game, the more revenue
the NSP can get. Compared to uniform pricing, optimal
flat rate pricing, and DTDP under complete information, the
performance improvements are 36.07%, 324.06% and 18.70%,
respectively. Compared to uniform pricing under incomplete
information, the performance improvement is 135.51%. In
uniform pricing, the economic benefits of the NSP are severely
degraded because the price cannot effectively reveal the
real-time congestion level.

Fig. 7 shows the convergence performance of the proposed
algorithms with 102 users. The optimality gap is calculated
by minusing the performance achieved by Algorithm 1 or
Algorithm 2 from the optimal performance. It can be evidently
observed that the optimality gap of Algorithm 2 decreases
much faster than that of Algorithm 1, which demonstrates
that Algorithm 2 has a better convergence performance. The
reason is the step size of Algorithm 2 is dynamically adjusted
to improve the convergence speed, while Algorithm 1 adopts
a fixed price perturbation. Simulation results also demonstrate
that Algorithm 2 has a smaller optimality gap. Compared with
the optimal strategy, the performance loss of Algorithm 1 is
5.25% after 600 iterations, while that of Algorithm 2 is only
1.94%.

We use the peak-to-average traffic ratio (PATR) to measure
the degree to which the traffic demand is balanced over a day.
A higher PATR implies that the traffic is more unbalanced
and the NSP has more idle network capacity over-provisioned
for the peak traffic demand. Fig. 8 shows that the proposed
scheme allows the NSP to reduce the PATR by up to 15.00%
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and 19.35% compared to the uniform pricing and the optimal
flat rate pricing under incomplete information.

VIII. CONCLUSION AND FUTURE WORK

This paper studies joint pricing and bandwidth allocation for
QoS-guaranteed multimedia applications in software-defined
cellular networks. Congestion prices are sent to multimedia
application users as a signal indicating the real-time traffic
load. With our proposed scheme, delay-tolerant users can make
their decisions on whether to defer their traffic and vacate
bandwidth resources for other delay-sensitive users based on
the price signals perceived. The efficiency of our proposed
scheme is demonstrated by means of simulation. Results show
that the traffic demand can be efficiently shifted from peak

800 1000 1200 1400
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Fig. 5. Cumulative net benefit of users versus time slot with multiple
congested links.

time to off-peak time, and the revenue of NSP and net benefit
of users are significantly improved.

Several issues are left to be further investigated, such as
users are uncertain about how many slots they should wait
until the next off-peak slot comes; and burden of decision
making on whether to keep connecting or not in each peak
slot. We believe that these problems are inevitable as long as
the price is set to reflect the real-time traffic load. However,
these problems can be alleviated, through letting users set
their budgets as well as the delay tolerance in advance. If the
users are not intended to monitor the time-varying congestion
prices, an artificial intelligence could be introduced to assist
the users for decision-making (i.e., to stay connected or not).
Furthermore, the deferred online streaming contents could
be downloaded offline within the budget and delay tolerance
specified by the users. We will further investigate these issues



Fig.

——- Proposed Scheme under Complete Information

8- Proposed Scheme under Incomplete Information
g --------- Uniform Pricing under Complete Information
% 71 — Uniform Pricing under Incomplete Information
5 6 —:- DTDP with Complete Information
o Optimal Flat Rate Pricing 7
o .
75
=
(]
04
%3
>
£
E2
(&)

1 4

0_

0 20 40 60 80 100
User

6. Cumulative revenue of the NSP versus the number of user with

multiple congested links.

X108
54 ——= Algorithm 1
Algorithm 2
44>~
Q ~o
© ~.
3> N
> 31 Sl
£2] T
2 S
o ™~
o ~o
0. —
0 200 400 600
Iteration
Fig. 7. Convergence performance.
in our future work.
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