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Along with the increase of the use of working frequencies in advanced radio communication systems, the near-region inside 
tunnels lengthens considerably and even occupies the whole propagation cell or the entire length of some short tunnels. This 
paper analytically models the propagation mechanisms and their dividing point in the near-region of arbitrary cross-sectional 
tunnels for the first time. To begin with, the propagation losses owing to the free space mechanism and the multimode waveguide 
mechanism are modeled, respectively. Then, by conjunctively employing the propagation theory and the three-dimensional solid 
geometry, the paper presents a general model for the dividing point between two propagation mechanisms. It is worthy to mention 
that this model can be applied in arbitrary cross-sectional tunnels. Furthermore, the general dividing point model is specified in 
rectangular, circular, and arched tunnels, respectively. Five groups of measurements are used to justify the model in different 
tunnels at different frequencies. Finally, in order to facilitate the use of the model, simplified analytical solutions for the dividing 
point in five specific application situations are derived. The results in this paper could help deepen the insight into the propagation 
mechanisms in tunnels. 

1. Introduction 

Effective prediction models of propagation properties in 
tunnels are highly requested in the design and planning 
phases of advanced radio systems. In order to describe 
the propagation characteristics inside tunnels, most models 
presented in the last four decades indicate that there is a 
“critical distance” [1, 2], normally called the break point [1– 
3]. Before the break point is the near-region, where the high-
order modes are significant; guided propagation has not been 
well established, and, therefore, the signal suffers larger loss. 
After the break point is the far-region, where the high order 
modes have been greatly attenuated; guided propagation has 
been stabilized and undergoes a smaller loss [2, 4–6]. 

The distance from the transmitter to the break point is 
expressed by [1] 

ZNR = Max 
/ W2 H2 \ 
\ A ' A y (1) 

where Z^R, W, H, and A denote the length of near-region, 
the width and the height of rectangular tunnel, as well as the 
signal wavelength in metres. This formula can be applied in 
arched and circular tunnel cases as the EM field distribution 
and attenuation of the modes in arched and circular tunnels 
are almost the same as the rectangular tunnel [7]. Please note 
that ZMR is inversely proportional to the wavelength. 

By making a review on the development of wireless 
communication systems, we can find that the near-region 
inside tunnels lengthens greatly resulting from the increase of 
working frequencies. In the public communication field, the 
representative systems can be listed as GSM (Global System 
for Mobile Communications), 3G (3rd Generation), Wi-
Fi (Wireless Fidelity), and WiMAX (World Interoperability 
for Microwave Access). Their frequencies are 900/1800 MHz, 
2 GHz, 2.4/5 GHz, 3.8 GHz, 5.7 GHz, and 5.8 GHz, respec-
tively By assuming the máximum of the width and the 
height of the equivalent rectangular tunnel to be 15m, 
which is very common for the double-track subway tunnel 
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or railway tunnel, (1) calculates the length of the near-
region in each system as 675/1350 m, 1500 m, 1800/3750 m, 
2850 m, 4275 m, and 4350 m, respectively. In the dedicated 
communication área, the list could be TETRA (Terrestrial 
Trunked Radio) [8], GSM-R (Global System for Mobile 
Communications for Railway) [9], CBTC (Communication-
Based Train Control System) [10], and DSRC (Dedicated 
Short-range Communications) [11]. Their frequencies are 
400 MHz, 900 MHz, 2.4 GHz, and 5.8/5.9 GHz, respectively. 
The corresponding near-regions can be 300 m, 675 m, 
1800 m, and 4350/4425 m, respectively. This great change 
reveáis the fact that the near-region may occupy most of 
the propagation cell at high frequencies. Especially in some 
short tunnels or high reliable systems that require a modérate 
overlapping of the transmitters, the whole propagation cell 
could even only be in the near-region. However, there is no 
unanimous consensus, yet there is on the propagation in 
the near-region. Some researchers are inclined to interpret 
the propagation before the break point with the single ray 
(free space) theory [6, 12, 13], whereas others contend that 
it should be described by the multimode waveguide model 
[1, 2, 14]. In fact, a big deal of evidence proves that the free 
space mechanism should be established firstly and the multi­
mode propagation mechanism comes later. Thus, in order 
to clearly reveal the propagation mechanism situation in the 
near-region, it is essential to model the accurate location 
of the dividing point between the two mechanisms. This 
paper presents a novel general analytical model that can be 
employed in arbitrary cross-sectional tunnels. 

2. Modeling for the Propagation Mechanisms 
and Their Dividing Point 

2.1. Geometrical Modeling for Rectangular, Circular, and 
Arched Tunnels. Generally speaking, rectangular, circular, 
and arched tunnels cover almost all the realistic application 
situations. An extensive comparison of theoretical and 
experimental results allowed us to show that the copolar field 
variation in an arched tunnel can be predicted with sufficient 
accuracy by using modal theory and assuming a rectangular 
tunnel [15]. Meanwhile, the EM field distribution and 
attenuation of the modes in circular waveguide are almost 
the same as the rectangle waveguide [16]. Henee, in the 
analysis of the propagation loss in the multi-mode waveguide 
segment, the tunnel’s cross section is treated as an equivalent 
rectangle with a width of w and a height of h. A Cartesian 
coordínate system is set with its origin located at the center 
of the rectangle tunnel. 

In the case of an arched tunnel, the size of the equivalent 
rectangular waveguide that is used in the model can be 
computed by taking the main horizontal dimensión h 
cióse to the tunnel’s fioor size and computing the vertical 
dimensión w using the “rule of thumb”, that is, 

h = ¡AR2 - w2, (2) 

where R is the radius of the arched-ceiling/wall’s circle. This 
idealized geometry is common in modern road and railway 
tunnels [17]. In the case of a circular tunnel, w = h = 2R, 

where R is the radius of the radius of the cross-sectional 
circle. 

2.2. Propagation Loss in Different Propagation Mechanisms 

2.2.1. Propagation Loss in the Free Space Propagation Segment. 
In the adjacent región of the transmitter antenna, the angles 
of incidence from the ray to the wall (vertical, horizontal, and 
circular) are high resulting in high attenuation of refiected 
rays, whereas the path difference between direct and refiected 
rays may also cause additional attenuation; thus, only the 
direct ray significantly contributes to the strength of the 
received signal. The channel loss in this segment follows the 
free space loss attenuation [18] 

PL(dB) =-101og10 
A2 1 

(4n)2\zr-zt\
2y 

(3) 

where \zr — zt\ is the distance between the transmitter and 
receiver in meters and A is the signal wavelength. 

2.2.2. Propagation Loss in the Multimode Waveguide Segment. 
According to the modal theory, an equivalent rectangular 
tunnel can be regarded as an oversized imperfect hollow 
rectangular waveguide. Since the UHF is much higher than 
the cutoff frequeney of the fundamental modes which is very 
low, a wide range oíEm„ múltiple modes propágate when the 
free space segment ends [12]. 

By employing the modal theory, the general expression 
of the attenuation constant with horizontally and vertically 
polarized Em„ modes inside various tunnels [19], such 
as circular tunnel, rectangular tunnel, arched tunnel, oval 
tunnel, and so forth can be given by 

m2er n2 

a(m, n) = a>A 

v 1 2 / 

a(m, n) = (pÁ 

dB 
1 h^Sr — 1 m 

n2er dB 
W3V£r - 1 /j3V£r - 1 m 

(4) 

where w and h denote the máximum of the width and the 
height, respectively; (p is a coefficient, its valué varíes by the 
different shape of the tunnel [20]: rectangular tunnel, (p = 
4.343; circular tunnel, (p = 5.09; arched tunnel, (p = 5.13. 
ev and £/, are relative permittivity for vertical and horizontal 
walls, with the typical valúes for concrete: ev = e/¡ = 5 [ 1 ]. 

Besides the geometry of the tunnel, the roughness of 
walls of the tunnel influences the propagation loss as well. 
Henee, the attenuation owing to the roughness introduced 
by [2] is involved in the model. Finally, the propagation 
loss in the multi-mode waveguide segment can be obtained 
by considering both the polarizations and the roughness of 
walls; 

L^(d£)=101ogl 
i r\2a(i,j) \zr-z¡\ i -\r\2a(í,j)v\zr-Zt 

m n i 

7 ?i í 1 1 \ . 
+8.6867T y A — + - \zr - zA, 

' wA h4 

(5) 

where y is the root-mean-square roughness. 
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FIGURE 1: Flow chart of modeling for the diving point in arbitrary cross-sectional tunnels. 

2.3. Modeling for Dividing Point between Different Propa-
gation Mechanisms in Arbitrary Cross-Sectional Tunnels. In 
order to clarify the propagation mechanism situation, it is 
necessary to model accurately the location of the dividing 
point between the free space propagation segment and the 
multi-mode waveguide segment. 

On the basis of the analysis of the propagation procedure 
inside tunnels, it can be known that the point where the 
first Fresnel zone is tangent to the walls of the tunnel is the 
dividing point between the two mechanisms. However, the 
localization of it is not an easy work. Since the interaction 
between the first Fresnel zone and the walls depends on 
a large number of factors, such as the locations of the 
transmitter and receiver, the dimensions of the tunnel, 
the working frequency, the computational time would be 
intolerable if all the elements were considered when we track 
the interaction and its change law. Thus, it is desirable to find 
a simple parameter representing the interaction. 

According to the geometry, it is easy to determine the 
distance between the tangent line/curve (of the maximum 
Fresnel zone plate and the walls) and the middle point (of 
the line of sight between transmitter and receiver). If this 
distance is larger than the radius of the maximum first 
Fresnel zone plate, the first Fresnel zone can be treated as 
almost clear. We have to admit that in this case some parts 
inside the first Fresnel zone could still be blocked. But since 
the first Fresnel zone is a flat ellipsoid, such kind of slight 
obstruction does not result in many effective reflected rays 
or obvious diffractive loss. Hence, the free space propagation 
model can still work. When this distance is smaller than 
the radius, which means even the widest part of the first 
Fresnel zone is blocked, more severe obstruction occurs 

in the other parts. Thus, the relative relation between this 
distance and the radius can be employed to reflect the 
interaction between the first Fresnel zone and the walls to 
some extent. Furthermore, the location of the dividing point 
can be deduced when the distance and the radius are equal. 

Figure 1 illustrates the flow chart of the concrete 
modeling process. The first step is to geometrically model 
the arbitrary cross-sectional tunnel and all the relative com-
ponents. Figure 2 depicts the three-dimensional geometry 
schematic diagram of an arbitrary cross-sectional tunnel, 
transmitter, receiver, line of sight, and the maximum first 
Fresnel zone. 

According to the three-dimensional solid geometry, the 
arbitrary cross-sectional tunnel consists of a set of plane 
surfaces and curved surfaces whose coordinates x, y, and z 
satisfy the following equation 

f¡(x,y,z) = O, i = 1,2, ...,n. (6) 

The coordinates of transmitter, receiver, and the middle 
point on the line of sight between transmitter and receiver 
are Pt(xt, yt, zt), Pr(xr, yr,zr), and P0(x0, y0,z0); their rela-
tionships are expressed by 

%o 2 y0 2 
Zo 

Zr +Zt 

2 
(7) 

Then, the maximum Fresnel zone plane can be expressed by 
a plane in general type 

, Xr + Xt i •, Vr + Vt 
(Xr - Xt) X + (y r - Vt) y 

2 2 

zr +zt 
+ (zr — zt)z 

2 

(8) 
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FIGURE 2: Detailed schematic diagram of the propagation inside arbitrary cross-sectional tunnels with the first Fresnel zone clearance. 

Thus, the intersection between the máximum Fresnel zone 
plañe and the surface f¡ of the tunnel is a curve or a line which 
can be written by 

Xr+Xt , , Vr+ Vt 
(xr — xt)x + (yr - yt) y 

2 2 

zr +zt 
+ (zr — Zt)z = 0, 

2 
(9) 

2 

f¡(x,y,z)=0, i = 1,2, ...,n. 

Define the first equation as a function g(x, y, z) by 

l \ ( Xr + Xf\ 
g(x,y,z) = (xr - Xt) \x 

2 
, , yr + yt 

+ (yr - yt) y 
2 2 

Zr + Zf 

(10) 

Zr + Zt 
+ (Zr — Zt)Z 

2 

Define the second equation as a function f¡(x,y,z). 
In order to find the minimal distance between the 

intersection (line/curve) and the middle point Po(xo,yo, Zo) 
on the line of sight, the Lagrange multiplier method seeking 
extremum is employed. Construct a function as follows: 

7 7 
r, / i \ / xr+xt\ ( yr + yt\ 
F¡(x,y,z,p¡,A¡) = x + y 

2 2 
7 

/ zr + zt \ , > 
+ I z +p ; • g(x, y,z) 

2 

(11) 

+ Á¡ • f¡ (x, y, z), 

where í,, and ¡i are the Lagrange multipliers. By seeking 
partial derivative of x, y, and z, respectively, (11) can be 
transformed to 

dF¡ xr + Xt 
r— = 2 x 
dx 2 

dF¡ 

dy 

dF¡ 

dz 

( xr + Xt \ , 
x + p¡ • (xr - Xt) + A¡ • 

\ 2 ) 

( yr + y{\ i \ 
2 v I + p¡ • (yr - yt) + A, 

2 
2 

Zr + Z-t Zr + Zt , , 
2 Z + p¡ • (Zr — Zt) + A, 

2 

dx 

dy 

dz 

0, 

o, 

0, 

dF¡ 

dpi 

, xr +xt i , yr + yt 
(Xr - xt) x + (yr - yt) y 

2 2 

/ Zr + Zt \ 
+ (zr — zt)z = 0, 

2 

dF¡ 

dX¡ 
f¡ = 0. 

(12) 

By seeking the simultaneous solution of (12), the 
coordínate of intersection point with the minimal distance 

toPo(xo,yo,Zo) canbe obtúneá:p^^xf^Zr),yf'(Zr),zf'(Zr)). 
Therefore, the minimal distance between Po and the intersec­
tion (line/curve) between the máximum Fresnel zone plañe 
and the surface f¡ of the tunnel can be expressed as 

" M i n ( Z [ 7 
I f Xr + Xt \ 
xJ'(zr)  2 

+ [yf'(Zr) 

+ \zJ'(Zr) -

yr + yt 

2 

Zr + Zt 

2 

2 

21 ^ 

(13) 

y 
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On the basis of the propagation theory, the radius of the first 
Fresnel zone is determined by 

n / \d\di  
d\ + di' 

(14) 

where d1 denotes the distance between the transmitter and 
the interaction between the line of sight and the first Fresnel 
zone, and d2 denotes the distance between the receiver and 
the interaction. When the interaction is the middle point P0, 
d1 = dPtP0 = d2 = dP0Pr = (1/2)dPtPr . At this point, the radius 
gets the maximum value of the first Fresnel zone 

^lMaxv^r/ VA-Üptpr. (15) 

The propagation theory indicates that the free space loss 
channel model can be applied if the first Fresnel zone is free 
of any obstacles. Therefore, if only the wall fi(x, y, z) of the 
tunnel could be touched by the maximum first Fresnel zone, 
the dividing point between two propagation mechanisms 
locates at zrM

fi
 in which is the minimal positive real root of the 

f. 

l̂Max(-Zr) = £%¡n(.Zr)' 

í Hence, zrM
fi

 in can be expressed by 

fi 
rMin M i n | z r | f¿Max = ¿Min,-Zr ∈ # j , 

(16) 

(17) 

which means the maximum first Fresnel zone first touches 
the surface fi(x, y, z) of tunnels. 

However, in fact, there are totally n walls of the arbitrary 
cross-sectional tunnels that could be tangent to the maxi-
mum first Fresnel zone. Therefore, the dividing point locates 
at zr when the maximum first Fresnel zone first touches any 
one of the walls. Thus, the dividing point locates at 

zr Minjzr'Min,¿ = 1,2,... ,n\, (18) 

which means the maximum first Fresnel zone first touches 
any one of the surfaces of tunnels. 

3. Dividing Point Model Validation in 
Rectangular, Circular, and Arched Tunnels 

Theoretically, the general model can be employed in arbi-
trary cross-sectional tunnels by substituting various param-
eters. Here, we give the specific model and corresponding 
validation in the main types of tunnels in reality (rectangular, 
circular, and arched tunnels), respectively. 

3.1. Dividing Point Model in Rectangular Tunnel. Figure 3 
demonstrates the propagation inside a rectangular tunnel 
with the first Fresnel zone clearance. In a rectangular tunnel, 
two vertical walls and two horizontal planes can possibly 
obstruct the first Fresnel zone; thus, by substituting following 
functions: 

(i) Left vertical wall: fPla-L : x =-b; 

(ii) Right vertical wall: fPla-R : x = b; 

TABLE 1:Comparisonsofthe dividing point between the model, and 
the measurements inside rectangular circular, and arched tunnels. 

Tunnel Frequency 
(GHz) 

Measured 
result 

Theoretical 
prediction 

Railway tunnel in 
Spain [1] 0.9 30-35 m 30.86 m 

Vehicle tunnel in 
France [21] 0.45 35-40 m 37.88 m 

Vehicle tunnel in 
France [21] 0.9 70-75 m 75.76 m 

Pedestrian tunnel in 
Europe [12] 0.4 15m 13.65 m 

Road tunnel 
Austria-Slovenia 0.4 15m 15.41 m 
[12] 

(iii) ceiling: fPla-C : y = a; 

(iv) Floor: fPla-F : y =-c; 

to (6), dM
Pla

in
-L(zr), dM

Pla
in

-R(zr), dM
Pla

in
-C(zr), and dM

Pla
in

-F(zr) corre-
sponding to the minimal distance from P0 to the intersection 
line on the left vertical wall, right vertical wall, ceiling, and 
floor can be obtained. By using (16), the dividing point 
location of zr

P
M

la
in

-L, zr
P

M
la

in
-R, zr

P
M

la
in

-C, and zr
P

M
la

in
-F, corresponding 

to the touching of the maximum first Fresnel zone and the 
left wall, right wall, ceiling, and floor of rectangular tunnels, 
respectively, can be derived as 

ZrUinL = MÍnjZ r | fiMax(-Zr) = dl^n
L,Zr ∈ R+ [, 

^rMin* = MÍnjZ r | fiMax(-Zr) = d^¡^,Zr ∈ R+ [, 

ZrMinC = MinjZr | T\MaAzr) = ¿ M i í , Zr ∈ R+ i, 

ZrMinF = MinjZr | T\MaAzr) = ¿Mü^, Zr ∈ R+ i. 

(19) 

Then, the dividing point between two propagation mecha-
nisms inside a rectangular tunnel locates at zr : 

zr Min(zr 
Pla-Í! _ Pla-Í! _ Pla-C _ Pla-F 
Min > r̂Min > r̂Min > ^rMin (20) 

In order to validate the performance of the model in 
rectangular tunnels, a set of measurements is taken in one 
of the longest tunnels of the new 450 km high-speed train 
line from Madrid to Lleida in Spain [1]: λ = 0.33, a = 3.15, 
b = 5.35, c = 3.15, xt =-5.15, yt = 0.85, zt = 0, 
xr =-2.35, and yr =-0.15. By seeking the minimal positive 
real root of the simultaneous solution of (12), the results 
are the coordinates of the intersection points in each surface 
with the minimal distance to P0(x0, y0,z0) in the rectangular 
tunnel: pM

Pla
in

-L(-5.35, 0.35, 15.58), pP
M

la
in

-R(5.35, 0.35, 497.33), 
pP

M
la

in
-C(-3.75, 3.15, 47.1), and pM

Pla
in

-F(-3.75, -3.15, 73.54). By 
solving (16) and (17), zr

P
M

la
in

-L 

zr
P

M
la

in
-C = 94.14, and zr

P
M

la
in

-F = 
= 30.86, zr

P
M

la
in

-R = 994.72, 
147.12. Hence, according to 

(18), the dividing point locates at zr = 30.86 in this case. 
Comparison results are shown in Table 1. 

file:///d/di
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(-6,0,0) 

(-b,-c,0) 

FIGURE 3: Detailed schematic diagram of the propagation inside rectangular tunnels with the first Fresnel zone clearance. 

(-R,0,0) 

(0, -R, 0) 

FIGURE 4: Detailed schematic diagram of the propagation inside circular tunnels with the first Fresnel zone clearance. 

3.2. Dividing Point Model in Circular Tunnel. Figure 4 
illustrates the propagation inside circular tunnel with the 
first Fresnel zone clearance. In circular tunnel, the circular 
walls can possibly obstruct the first Fresnel zone; thus, by 
substituting the following function: 

(i) Circular wall: fCir : x
2 + y2 = R2 to (6), dM

Ci
i
r
n(zr) corre-

sponding to the minimal distance from P0 to the intersection 
curve on the circular wall can be obtained. By using (16), 
the dividing point location of zr

C
M

i
i
r
n corresponding to the 

touching of the maximum first Fresnel zone and the circular 
wall of tunnels can be obtained as 

ZrMin = M Í n Z r | fiMax(-Zr) = d 
Pla-
Min ̂ ,zr e F . (21) 

Then, the dividing point between mechanisms inside a cir­
cular tunnel locates at zr : 

zr 
MinZn-ruin 

r, Cir ZrMin' (22) 

In order to validate the performance of the model in 
circular tunnels, two groups of experiments in a 3.5 km-long 
straight tunnel in the Massif Central of south-central France 
reported in [21] have been employed. Relevant parameters in 
these measurements are cited as follows: 

2 
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P0(X0, y0,z0) 

(-6,0,0) 

(—6, —c, 0) 

(0, —c, 0) y ^ "¡( 

(6, —c, 0) 

FIGURE 5: Detailed schematic diagram of the propagation inside the arched tunnel “Type I” with the first Fresnel zone clearance. 

y 

(-R,0, 0) 

(—6, —c, 0) 

(0, —c, 0) 
P0(X0, y0, Z0) 

FIGURE 6: Detailed schematic diagram of the propagation inside the arched tunnel “Type II” with the first Fresnel zone clearance. 

(i) first group of measurements [21]: A = 0.66, R = 4.3, 
Xt = 1.8, yt = 0, zt = 0, xr = 1.8, yr = 0. 

(ii) second group of measurements [21]: A = 0.33, R = 
4.3, Xt = 1.8, yt = 0, Zt = 0, xr = 1.8, yr = 0. 

In the case of the first group, by seeking the simultaneous 
solution of (12), the minimal positive real root is the 
coordínate of intersection point with the minimal distance 
to Po(xo,yo,Zo) in the measured tunnel: ^3^(4 .3,0,18 .94). 
By solving (16) and (17), ZJ-ML = 37.88. Henee, according 
to (18), the dividing point locates at zr = 37.88. In term of 
the second group, ^ '^(4 .3,0,37 .88) , zr^in = 75.76. All the 
comparison results are shown in Table 1. 

3.3. Dividing Point Model in Arched Tunnel. There are mainly 
two kinds of arched tunnels. “Type I” consists of three 

plane walls and an arched roof; “Type II” includes arched 
walls and roof, but a plane floor, more like a semicircle. 
Figures 5 and 6 demonstrate the cross-sectional geometry 
for both types of arched tunnels. It is noteworthy that both 
the arched tunnel “Type I” and “Type II” can be seen as a 
combination of a circular tunnel and a rectangular tunnel, 
but in different configurations. Hence, the dividing point 
can be modeled in a circular tunnel and a rectangular 
tunnel independently and then determined by their specific 
combinations. 

Figure 5 shows the propagation inside the arched tunnel 
“Type I” with the first Fresnel zone clearance. In “Type I”, two 
vertical walls and the floor in the rectangular tunnel as well 
as the arched roof in the circular tunnel can possibly obstruct 
the first Fresnel zone; thus, by substituting the functions of 
the roof, walls, and floor to (6): 

z 

z 
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(i) left vertical wall: x = — b; 

(ii) right vertical wall: x = b; 

(iii) floor: y = — c; 

(iv) arched roof: x2 + y2 = R2, \x\ < b, a < y < R; 

d^l¡n
R(zr), d^^{zr), d^n

L(zr), and d^If(zr) correspond-
ing to the minimal distance from Po to the intersection 
(line/curve) on the arched roof, the right/left wall and the 
floor can be obtained. By employing (17), the dividing point 
location ot zr^¡¡n , zr\£m, zrjjfin , and zr^ir[ correspondmg to 
the touching of the máximum first Fresnel zone and every 
wall of arched tunnels can be deduced as 

2TMinK = M Í n j Z r | fiMax(-Zr) = ¿Min^ '^r G R+[, 

ZrMinK = M i n j Z r | T\y[^(zr) = d^n
R,Zr G R+i, 

ZrMinL = M i n j Z r | T\y[^(zr) = d^gn
L, Zr G R+i, 

ZrMin = M Í n j Z r | fiMax(-Zr) = d^n
F,Zr G R+ [. 

Thus, the dividing point inside the arched tunnel “Type I” 
locates at zr: 

(23) 

zr 
Min (zr ¿j[nK, zr M¡nK, zr M¡nL, zr M¡nF J. (24) 

Figure 6 illustrates the propagation inside the arched 
tunnel “Type II” with the first Fresnel zone clearance. In 
“Type II”, only the floor in the rectangular tunnel and the 
arched roof/wall in the circular tunnel can possibly obstruct 
the first Fresnel zone; therefore, by substituting the functions 
of the arched roof and the floor to (6): 

(i) floor: y = — c; 

(ii) arched roof: x2 + y2 = R2, -c < y < R; 

Jdr-B/W (zr) and dM
Pla

in
-F(zr) corresponding to the minimal 

distance from P0 to the intersection (line/curve) on the 
arched roof/wall and the floor can be obtained. Then, the 
dividing point location of zr

C
M

i
 i
r
n
-R/W and zr

P
M

la
in

-F corresponding 
to the touching of the maximum first Fresnel zone and every 
wall can be derived as 

Cir-WW 
zrMin M Í n j Z r | fiMax(-Zr) = d^¡n

R,Zr G R+ [ 

ZrMin = M Í n j Z r | fiMax(-Zr) = d^n
F,Zr G R+ [. 

(25) 

The dividing point inside the arched tunnel “Type II” locates 
at zr: 

Zr MÍn(zr I v J [n , ZrMin ) ' ( 2 6 ) 

Two groups of measurement campaigns have been used 
for validating the model in arched tunnels. 

(i) The first group of received signal strength measure-
ments are performed in a railway tunnel typical to 
Europe at 400 MHz. The tunnel is 520 m long and 
originally engineered for a railway, but the line was 
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FIGURE 7: Comparisons between measurement and theory on the 
propagation mechanisms and their dividing point in the near-
region inside an arched tunnel. 

closed, and it is now used by pedestrians and cyclists 
[12]: A = 0.75, R = 2.35, Xt = 0, yt = 0, Zt = 0, xr = 
0, yr = 0, A = 0, and c = 1.5. By joint solving (12), 
the coordínate of intersection point with the minimal 
distance to Po(xo,yo,Zo) in the arched tunnel can be 
derived: py^^ (0,2.35,13.48), p^n (0, —1.5,6.85). 
By solving (16) and (17), zr1J¡¡n = 27, zr\^ 

13.65. 
rMin ~~ ¿ / > ^ M i n 

13.65. Henee, the dividing point locates at zr = 
(ii) The second set of measurements are carried out 

in a dual carriageway road tunnel linking Austria 
and Slovenia at 400 MHz. The tunnel was closed 
in one direction at the time, while the second 
lañe operated normally [12]: A = 0.75, R = 5.28, 
xt = 3.2, yt =-0.8, zt = 0, xr = 3.2, yr =-0.8, 
c = 2.5. By seeking the simultaneous solution of 
(12), the coordínate of intersection point with the 
minimal distance to Po(xo,yo,Zo) can be obtained: 

K}|f(3.2, -2.5,7.71). p^w(5.12, -1.28,10.47), 
so, zr

C
M

i
i
r
n
-R/W = 20.94, zr

P
M

la
in

-F = 15.41. Equation (18) 
indicates the dividing point locating at zr = 15.41, 
which means the Maximum first Fresnel zone first 
touches the roof of the arched tunnel. 

3.4. Validation Results. Ta b l e 1 illustrates the global compar-
isons of the dividing point between the results of model and 
the measurements inside rectangular, circular, and arched 
tunnels. The location of the dividing point is extracted 
from the measurements in the following way: the free 
space propagation model was compared with the measured 
received signal power; then, the point, in front of which the 
fitting is good and behind which is bad, was found. As shown 
in Table 1, the results indicate that the model for the dividing 

8 
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, 0, zr) 
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FIGURE 8: (a) specific situation one; (b) specific situation two; (c) specific situation three; (d) specific situation Four; (e) specific situation 
five. 

point has a good performance in different types of tunnels at 
various frequencies. 

To clearly depict the effect of the entire propagation 
model in the near-region of arbitrary cross-sectional tunnels, 
the measurement carried out in a railway tunnel in Spain 
at 900 MHz [1] has been employed. As shown in Figure 7, 
the dividing point separates two propagation segments. The 
propagation in the segment before the dividing point follows 
the free space mechanism, and corresponding free space loss 
model has a good agreement with the measured received 
signal power. The segment after the dividing point is dom-
inated by the multi-mode waveguide mechanism, and the 
multimode waveguide loss model shows a good performance 
as well. The accurate location of the dividing point clearly 
distinguishes between two propagation mechanisms in the 
near-region. Therefore, the previous different and seemingly 
conflicting views [1, 2, 6, 12–14] have been unified by this 
general model. 

All the validation results and comparisons offered above 
implies that the model for the propagation mechanisms and 
their dividing point in the near-region are valid and easy to 
be used in arbitrary cross-sectional tunnels. 

4. Dividing Point Model Simplification 
and Discussion 

In some real applications, the locations of transmitters and 
receivers, as well as the motion trajectories of mobile stations 
follow certain rules. In this section, the simplified formulas 

of the diving point model in rectangular, circular, and 
arched tunnels are deduced corresponding to five application 
situations. 

Figure 8(a) illustrates specific situation one: in some 
systems, such as Dedicated Short-Range Communications 
(DSRC) [11], the communication is going on between differ-
ent vehicles (car or carriage). In this case, the transmitter and 
the receiver always have similar heights and similar tracks: 
xt = xr = X, yt = yr = Y. Figure 8(b) depicts specific 
situation two, which can be met in DSRC, particularly in 
the dual carriageway road tunnel where the antennas of 
transmitter and receiver on vehicle have similar horizontal 
and vertical distance from the center of the cross-section: 
xt = xr = yt = yr = L. Figure 8(c) shows specific situation 
three: unlike specific situation two, this situation usually 
occurs in the one-way narrow tunnel, for both car and train. 
That means all the communication units move along the 
central track with similar high antennas: xt = xr = 0, yt = 
yr = Y. Figure 8(d) demonstrates specific situation four: 
like specific situation three, this situation requirements can 
be met in multi-way wide tunnel, for both cars and trains. 
In this case, all the communication units move along the 
same track and the antennas’ heights approximately equal 
the center of the cross-section: xt = xr = X, yt = yr = 
0; Figure 8(e) shows specific situation five: in some long 
tunnels, especially with the operating frequency of several 
GHz, the near-region is very long. In this case, by using 
the modal theory, the transmitter and the receiver can be 
approximated to be located at the center of the tunnel’s cross-
section: xt = xr = 0, yt = yr = 0. 

2 

2 
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TA B LE 2: Simplification of the dividing point model in certain specific situations. 

Situation Condition Tunnel Type Dividing point zr 

One 

(xt = xr = X, Rectangular 

yt = yr = Y) Circular 

Arched Type I 

Arched Type II 

Min 
A 2 A 2 , 2 

A(a - Y) A(b±X) A(c+Y) 
A 

Min 

A A 

R - -JX2 + Y2) 

, , A 
A[R-~JX2 + Y2) 4(b±X)2 A(c+Y)2 

Min 

A A A 

Í[R-~JX2 + Y2) 4(c + y)2 

A A 

Tw o 

(xt = xr = L, Rectangular 

yt = yr = L) Circular 

Arched Type I 

Arched Type II 

Min 
A 2 1 2 A 2 

A(a - L) 4(0 ± L) A(c + L) 

Min 

A A A 

A\R - V2LJ 

AÍ m\2 i u 2 M * 
A(R - V2LJ 4(o ± L) A(c+L) 

Min 

A A A 

A(R - V2-LJ 4(c + LJ 
A A 

Three 

(x( = xr = 0, Rectangular 

y( = yr = 7) Circular 

Arched Type I 

Arched Type II 

Min 

Min 

2 A 1 ? i^\2 

4(a - Y) Ab 4 ( c + i ) 
l A 

4(i< - í ) 

A 

4(i< - Y) Ab2 4 ( c + í ) 

Min 

A A A 
n \r\2 r\2 

4(K - I ) 4(C + Y j 
A A 

Four 

(x( = xr = X, Rectangular 

yt = yr = 0) Circular 

Arched Type I 

Arched Type II 

Min 
4<r 4(o ± A ) 4CZ  

A ' A A 

4(K -A) 

Min 
n v\2 1 2 * ? 

4 ( K - A J 4(0 ±X) Ac  

A A ' A 
4(R - X)2 Ac2 

Min 
l A(R -X) 2 Ac2\ 
\ A A J 

Five 

(xt = xr = 0, Rectangular 

yt = yr = 0) Circular 

Arched Type I 

Arched Type II 

Min 

Min 

l Aa2 Ab2 Ac2 \ 
\ A ' A ' A J 

AR2 

A 
l AR2 Ab2 Ac2 \ 
^ A ' A ' A y 

. / AR2 Ac2 \ 
í n ¡ , ^ 

\ A A J 

As shown in Table 2, the location of the dividing point in 
each case can be expressed by simple formulas corresponding 
to rectangular, circular, and arched tunnels (both “Type I” 
and “Type II”). 

All the simplified formulas provide an easy way to 
determine the location of the areas corresponding to dif-
ferent propagation mechanisms in the near-region, under 
the realistic application scenarios. Summarizing the general 
character of the simplified formulas, we have found that 

the minimal absolute distance between antennas and any of 
the tunnel surfaces is the dominant factor in the calculation 
of these cases. This conclusion can be very useful for 
the system designer to control different mechanism-based 
propagation areas in the near-region within tunnels. For 
instance, using this model, new communication based train 
control system designers can expand or suppress certain 
propagation mechanisms according their design require-
ments. 
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5. Conclusion 

This paper clarifies the propagation mechanism situation 
in the near-region of tunnels. The main contribution of 
this paper is to present a general analytical approach and 
model for the dividing point between different propagation 
mechanisms in arbitrary cross-sectional tunnels for the first 
time. With the accurate localization of the dividing point, the 
existing seemingly conflicting views on the propagation in 
the near-region have been unified. From both the theoretical 
and measured results in five typical pedestrian, road, and 
railway tunnels, the dividing point locates from 13.65 
to 75.76 m when the frequency ranges from 400 MHz to 
900 MHz. This location could be further when the frequency 
is higher or when the transmitter/receiver is further away 
from the walls of tunnels. 

In order to facilitate the implementation of the proposed 
model, the specific model in the main types of tunnels 
(rectangular, circular, and arched tunnels) is deduced. Par-
ticularly, in terms of five realistic application situations, 
the simplified models are given. It has been found that 
in these cases the minimal absolute distance between the 
antennas and any of the tunnel surfaces dominates the 
localization of the dividing point. This conclusion can effec-
tively help system designers to control different mechanism-
based propagation areas. The analysis, approach, and model 
in this paper can be essential and heuristic to a deeper 
understanding of the propagation mechanism inside tunnel, 
and can be applied in the realistic radio system design. Future 
work is to extend the presented model from the straight 
tunnel to the curved tunnel by considering the influence of 
the curve. 
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