69 research outputs found

    Preparation of Corrosion-Resistant Films on Magnesium Alloys by Steam Coating

    Get PDF
    This chapter introduces a novel, chemical-free “steam coating” method for preparing films on magnesium (Mg) alloys and assesses their effectiveness in improving the corrosion resistance of two different Mg alloys. A film composed of crystalline Mg(OH)2 and Mg-Al layered double hydroxide (LDH) was successfully formed on AZ31 Mg alloy, and its corrosion resistance was evaluated through electrochemical measurements and immersion tests in an aqueous solution containing 5 wt.% NaCl. An anticorrosive film was also formed on Ca-added flame-resistant AM60 (AMCa602) Mg alloy via the same steam coating method and found to be composed of crystalline Mg(OH)2 and Mg-Al layered double hydroxide (LDH). Its corrosion resistance was also investigated, and the effectiveness of the steam coating method for improving the corrosion resistance of Mg was fully explored

    Perturbed gap-filling synthesis in nucleotide excision repair causes histone H2AX phosphorylation in human quiescent cells

    Get PDF
    Human histone H2AX is rapidly phosphorylated on serine 139 in response to DNA double-strand breaks and plays a crucial role in tethering the factors involved in DNA repair and damage signaling. Replication stress caused by hydroxyurea or UV also initiates H2AX phosphorylation in S-phase cells, although UV induced H2AX phosphorylation in non-cycling cells has recently been observed. Here we study the UV induced H2AX phosphorylation in human primary fibroblasts under growth-arrested conditions. This reaction absolutely depends on nucleotide excision repair (NER) and is mechanistically distinct from the replication stress-induced phosphorylation. The treatment of cytosine-β-D-arabinofuranoside strikingly enhances the NER-dependent H2AX phosphorylation and induces the accumulation of replication protein A (RPA) and ATR-interacting protein (ATRIP) at locally UV-damaged subnuclear regions. Consistently, the phosphorylation appears to be mainly mediated by ataxia-telangiectasia mutated and Rad3-related (ATR), although Chk1 (Ser345) is not phosphorylated by the activated ATR. The cellular levels of DNA polymerases δ and ε and proliferating cell nuclear antigen are markedly reduced in quiescent cells. We propose a model that perturbed gap-filling synthesis following dual incision in NER generates single-strand DNA gaps and hence initiates H2AX phosphorylation by ATR with the aid of RPA and ATRIP

    Rho-Kinase/ROCK: A Key Regulator of the Cytoskeleton and Cell Polarity

    Get PDF
    Rho-associated kinase (Rho-kinase/ROCK/ROK) is an effector of the small GTPase Rho and belongs to the AGC family of kinases. Rho-kinase has pleiotropic functions including the regulation of cellular contraction, motility, morphology, polarity, cell division, and gene expression. Pharmacological analyses have revealed that Rho-kinase is involved in a wide range of diseases such as vasospasm, pulmonary hypertension, nerve injury, and glaucoma, and is therefore considered to be a potential therapeutic target. This review focuses on the structure, function, and modes of activation and action of Rho-kinase

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Measurement of Line Distribution of Thermal Contact Resistance Using Microscopic Lock-In Thermography

    No full text
    This paper proposes a new thermal contact resistance measurement method using lock-in thermography. Using the lock-in thermography with an infrared microscope, the local temperature behavior in the frequency domain across the contact interface was visualized in microscale. Additionally, a new thermal contact resistance measurement principle was constructed considering the superimposition of the reflected and transmitted temperature wave at the boundary and taking into account the intensity distribution of the heating laser as the gaussian distribution, and the specific geometrical condition of the laminated plate sample. As a result of the experiments, the one-dimensional distribution of the thermal contact resistance was obtained along the contact interface from the analysis of the phase lag

    Comparative Study of Staphylococcal Catalases

    No full text
    corecore