53 research outputs found

    Prevalence and Risk Factors of Intestinal Parasitism in Rural and Remote West Malaysia

    Get PDF
    Background: Intestinal parasitic infections (IPIs) have a worldwide distribution and have been identified as one of the most significant causes of illnesses and diseases among the disadvantaged population. In Malaysia, IPIs still persist in some rural areas, and this study was conducted to determine the current epidemiological status and to identify risk factors associated with IPIs among communities residing in rural and remote areas of West Malaysia. Methods/Findings: A total of 716 participants from 8 villages were involved, comprising those from 1 to 83 years old, 550 (76.8%) participants aged #12 years and 166 (23.2%) aged $13 years, and 304 (42.5%) male and 412 (57.5%) female. The overall prevalence of IPIs was high (73.2%). Soil-transmitted helminth (STH) infections (73.2%) were significantly more common compared to protozoa infections (21.4%) (p,0.001). The prevalence of IPIs showed an age dependency relationship, with significantly higher rates observed among those aged #12 years. Multivariate analysis demonstrated that participants aged #12 years (OR = 2.23; 95% CI = 1.45–3.45), low household income (OR = 4.93; 95% CI = 3.15–7.73), using untreated water supply (OR = 2.08; 95% CI = 1.36–3.21), and indiscriminate defecation (OR = 5.01; 95% CI = 3.30–7.62) were identified as significant predictors of IPIs among these communities. Conclusion: Essentially, these findings highlighted that IPIs are highly prevalent among the poor rural communities in West Malaysia. Poverty and low socioeconomic with poor environmental sanitation were indicated as important predictors of IPIs. Effective poverty reduction programmes, promotion of deworming, and mass campaigns to heighten awareness on health and hygiene are urgently needed to reduce IPIs

    A Cognitive Approach To Designing Effective Implementation Of Industrial Policies : C-Solutions for Vehicle Maintenance Regulations (VMR) Implementation in Sarawak

    Get PDF
    Policy implementation science has moved from its traditional top-down ‘’how-to’’ approach that focuses primarily on the policy implementers while neglecting those affected by the implementation, to the hybrid ‘’what-and-how-to’’ approach, where the policy implementation mechanics incorporate the understanding of the ‘’meaning’’ and ‘’benefits’’ of the policy from the perspective of all the stakeholders - those who will be doing the enforcement, and those who will be impacted upon by the policy. Theories from the science of the mind, or cognitive science, such as the theories of social cognition and distributed cognition, have gained popularity in policy implementation science in the developed countries since a decade ago. This new approach however, is still at inception stage in many developing countries. This research explored the utility of cognitive science approach in designing the implementation of industrial policies, in the case of implementing the Vehicle Maintenance Regulations (VMR) regulations, a set of mandatory regulations passed to regulate safe and healthy vehicle maintenance industry in Malaysia. The benefits of the cognitive approach, over the ‘’implementer-oriented’’ rational choice theory approach conventionally adopted in policy implementation were explored. The cognitive science approach is expected to increase the effectiveness of the VMR policy implementation by integrating the ‘sense-making’ and ‘meaning-making’ of all stakeholders whose cooperation and cooperativeness are highly essential in ensuring successful implementation. This research yielded both, an industrial working model, and an academic model. The C-Solutions Model suggests a win-win implementation plan that could garner support from all VMR stakeholders – the car workshop operators, the car owners, and the government implementer agents. The ‘’Cognitive Model of VMR Implementation’ was produced to describe how understanding the cognitive functions of the stakeholders could be utilised to collect their best support for the VMR regulations implementation

    f(R) theories

    Get PDF
    Over the past decade, f(R) theories have been extensively studied as one of the simplest modifications to General Relativity. In this article we review various applications of f(R) theories to cosmology and gravity - such as inflation, dark energy, local gravity constraints, cosmological perturbations, and spherically symmetric solutions in weak and strong gravitational backgrounds. We present a number of ways to distinguish those theories from General Relativity observationally and experimentally. We also discuss the extension to other modified gravity theories such as Brans-Dicke theory and Gauss-Bonnet gravity, and address models that can satisfy both cosmological and local gravity constraints.Comment: 156 pages, 14 figures, Invited review article in Living Reviews in Relativity, Published version, Comments are welcom

    Response Prediction in Chronic Hepatitis C by Assessment of IP-10 and IL28B-Related Single Nucleotide Polymorphisms

    Get PDF
    Background: High baseline levels of IP-10 predict a slower first phase decline in HCV RNA and a poor outcome following interferon/ribavirin therapy in patients with chronic hepatitis C. Several recent studies report that single nucleotide polymorphisms (SNPs) adjacent to IL28B predict spontaneous resolution of HCV infection and outcome of treatment among HCV genotype 1 infected patients. Methods and Findings: In the present study, we correlated the occurrence of variants at three such SNPs (rs12979860, rs12980275, and rs8099917) with pretreatment plasma IP-10 and HCV RNA throughout therapy within a phase III treatment trial (HCV-DITTO) involving 253 Caucasian patients. The favorable SNP variants (CC, AA, and TT, respectively) were associated with lower baseline IP-10 (P = 0.02, P = 0.01, P = 0.04) and were less common among HCV genotype 1 infected patients than genotype 2/3 (P<0.0001, P<0.0001, and P = 0.01). Patients carrying favorable SNP genotypes had higher baseline viral load than those carrying unfavorable variants (P = 0.0013, P = 0.029, P = 0.0004 respectively). Among HCV genotype 1 infected carriers of the favorable C, A, or T alleles, IP-10 below 150 pg/mL significantly predicted a more pronounced reduction of HCV RNA from day 0 to 4 (first phase decline), which translated into increased rates of RVR (62%, 53%, and 39%) and SVR (85%, 76%, and 75% respectively) among homozygous carriers with baseline IP-10 below 150 pg/mL. In multivariate analyses of genotype 1-infected patients, baseline IP-10 and C genotype at rs12979860 independently predicted the first phase viral decline and RVR, which in turn independently predicted SVR. Conclusions: Concomitant assessment of pretreatment IP-10 and IL28B-related SNPs augments the prediction of the first phase decline in HCV RNA, RVR, and final therapeutic outcome

    Therapeutic effects of the mitochondrial ROS-redox modulator KH176 in a mammalian model of Leigh Disease

    Get PDF
    Leigh Disease is a progressive neurometabolic disorder for which a clinical effective treatment is currently still lacking. Here, we report on the therapeutic efficacy of KH176, a new chemical entity derivative of Trolox, in Ndufs4 (-/-) mice, a mammalian model for Leigh Disease. Using in vivo brain diffusion tensor imaging, we show a loss of brain microstructural coherence in Ndufs4 (-/-) mice in the cerebral cortex, external capsule and cerebral peduncle. These findings are in line with the white matter diffusivity changes described in mitochondrial disease patients. Long-term KH176 treatment retained brain microstructural coherence in the external capsule in Ndufs4 (-/-) mice and normalized the increased lipid peroxidation in this area and the cerebral cortex. Furthermore, KH176 treatment was able to significantly improve rotarod and gait performance and reduced the degeneration of retinal ganglion cells in Ndufs4 (-/-) mice. These in vivo findings show that further development of KH176 as a potential treatment for mitochondrial disorders is worthwhile to pursue. Clinical trial studies to explore the potency, safety and efficacy of KH176 are ongoing

    Transcriptomic analysis of insecticide resistance in the lymphatic filariasis vector Culex quinquefasciatus

    Get PDF
    Culex quinquefasciatus plays an important role in transmission of vector-borne diseases of public health importance, including lymphatic filariasis (LF), as well as many arboviral diseases. Currently, efforts to tackle C. quinquefasciatus vectored diseases are based on either mass drug administration (MDA) for LF, or insecticide-based interventions. Widespread and intensive insecticide usage has resulted in increased resistance in mosquito vectors, including C. quinquefasciatus. Herein, the transcriptome profile of Ugandan bendiocarb-resistant C. quinquefasciatus was explored to identify candidate genes associated with insecticide resistance. High levels of insecticide resistance were observed for five out of six insecticides tested, with the lowest mortality (0.97%) reported to permethrin, while for DDT, lambdacyhalothrin, bendiocarb and deltamethrin the mortality rate ranged from 1.63–3.29%. Resistance to bendiocarb in exposed mosquitoes was marked, with 2.04% mortality following 1 h exposure and 58.02% after 4 h. Genotyping of the G119S Ace-1 target site mutation detected a highly significant association (p 8-fold increase vs unexposed controls). These results provide evidence that bendiocarb resistance in Ugandan C. quinquefasciatus is mediated by both target-site mechanisms and over-expression of detoxification enzymes

    Functional And Survival Outcome Of Egyptian Children And Adolescents With Malignant Bone Tumors: An Experience In A Setting Of Limited Health Resource

    No full text
    Evaluate outcome of paediatric malignant bone tumours at Ain Shams University, Egypt, from January 2003 to July 2016

    Virtual Sensor Using a Super Twisting Algorithm Based Uniform Robust Exact Differentiator for Electric Vehicles

    No full text
    The highly efficient Interior Permanent Magnet Synchronous Motor (IPMSM) is ubiquitous choice in Electric Vehicles (EVs) for today’s automotive industry. IPMSM control requires accurate knowledge of an immeasurable critical Permanent Magnet (PM) flux linkage parameter. The PM flux linkage is highly influenced by operating temperature which results in torque derating and hence power loss, unable to meet road loads and reduced life span of electrified powertrain in EVs. In this paper, novel virtual sensing scheme for estimating PM flux linkage through measured stator currents is designed for an IPMSM centric electrified powertrain. The proposed design is based on a Uniform Robust Exact Differentiator (URED) centric Super Twisting Algorithm (STA), which ensures robustness and finite-time convergence of the time derivative of the quadrature axis stator current of IPMSM. Moreover, URED is able to eliminate chattering without sacrificing robustness and precision. The proposed design detects variation in PM flux linkage due to change in operating temperature and hence is also able to establish characteristics of fault detection. The effectiveness and accuracy in different operating environments of the proposed scheme for nonlinear mathematical IPMSM model with complex EV dynamics are verified thorough extensive simulation experiments using MATLAB/Simulink

    Virtual Sensor Using a Super Twisting Algorithm Based Uniform Robust Exact Differentiator for Electric Vehicles

    No full text
    The highly efficient Interior Permanent Magnet Synchronous Motor (IPMSM) is ubiquitous choice in Electric Vehicles (EVs) for today&rsquo;s automotive industry. IPMSM control requires accurate knowledge of an immeasurable critical Permanent Magnet (PM) flux linkage parameter. The PM flux linkage is highly influenced by operating temperature which results in torque derating and hence power loss, unable to meet road loads and reduced life span of electrified powertrain in EVs. In this paper, novel virtual sensing scheme for estimating PM flux linkage through measured stator currents is designed for an IPMSM centric electrified powertrain. The proposed design is based on a Uniform Robust Exact Differentiator (URED) centric Super Twisting Algorithm (STA), which ensures robustness and finite-time convergence of the time derivative of the quadrature axis stator current of IPMSM. Moreover, URED is able to eliminate chattering without sacrificing robustness and precision. The proposed design detects variation in PM flux linkage due to change in operating temperature and hence is also able to establish characteristics of fault detection. The effectiveness and accuracy in different operating environments of the proposed scheme for nonlinear mathematical IPMSM model with complex EV dynamics are verified thorough extensive simulation experiments using MATLAB/Simulink
    corecore