2,211 research outputs found

    Increased expression of aggrecan and biglycan mRNA in Achilles tendinopathy

    Get PDF
    To determine the expression of mRNA encoding the proteoglycans aggrecan, versican, biglycan and decorin in mid-tendon samples of chronic painful Achilles tendinopathy and ruptured Achilles tendons, compared with normal tendons. Total RNA isolated from frozen tendon samples (14 normal, 13 painful, 14 ruptured) was assayed by relative quantitative reverse transcription polymerase chain reaction for aggrecan, versican, biglycan and decorin mRNA, normalized using 18S rRNA. Differences between sample groups were tested by univariate analysis of variance with age as co-variate. In normal tendon samples expression of each of the proteoglycan mRNA decreased with increasing age. Decorin mRNA was the most highly-expressed of the proteoglycan mRNA, while versican mRNA expression was higher (3.8-fold) than that of aggrecan. In painful tendinopathy both aggrecan and biglycan mRNA expression increased (more than 10-fold and 5-fold, respectively) compared with normal tendon samples, but levels of versican and decorin mRNA were not significantly changed. In ruptured tendons the levels of aggrecan, biglycan and versican mRNA were not changed compared with normal tendon samples, but decorin mRNA decreased markedly. Increased aggrecan and biglycan mRNA expression in painful tendinopathy resembles the pattern in fibrocartilaginous regions of tendon, and may reflect an altered mechanical environment at the site of the lesion. Increased aggrecan mRNA expression may underlie the increase in glycosaminoglycan observed in painful tendinopathy

    Versican splice variant messenger RNA expression in normal human Achilles tendon and tendinopathies

    Get PDF
    Versican is the principal large proteoglycan expressed in mid-tendon, but its role in tendon pathology is unknown. Our objective was to define the expression of versican isoform splice variant messenger ribonucleic acid (mRNA) in normal Achilles tendons, in chronic painful tendinopathy and in ruptured tendons. Total RNA isolated from frozen tendon samples (normal n = 14; chronic painful tendinopathy n = 10; ruptured n = 8) was assayed by relative quantitative reverse transcriptase polymerase chain reaction (RT-PCR) for total versican, versican variants V0, V1, V2, V3 and type I collagen a1 mRNA, normalized to glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Differences between sample groups were tested by Wilcoxon statistics. Painful and ruptured tendons showed a significant decrease (median 2-fold) in the expression of versican mRNA, in contrast to an increased expression (median 8-fold) of type I collagen a1 mRNA in painful tendons. Versican splice variants V0 and V1 mRNA were readily detected in normal samples, V3 levels were substantially lower, and V2 levels were more variable. Each of V1, V2 and V3 mRNA showed significant decreases in expression in painful and ruptured tendons, but V0 was not significantly changed. Changes in versican expression relative to that of collagen, and alterations in the balance of versican splice variants, may contribute to changes in matrix structure and function in tendinopathies

    Neuroarthropathy in diabetes: pathogenesis of Charcot arthropathy.

    Get PDF
    Charcot neuroarthropathy is a rare but serious complication of diabetes, causing progressive destruction of the bones and joints of the foot leading to deformity, altered biomechanics and an increased risk of ulceration. Management is complicated by a lack of consensus on diagnostic criteria and an incomplete understanding of the pathogenesis. In this review, we consider recent insights into the development of Charcot neuroarthropathy. It is likely to be dependent on several interrelated factors which may include a genetic pre-disposition in combination with diabetic neuropathy. This leads to decreased neuropeptides (nitric oxide and calcitonin gene-related peptide), which may affect the normal coupling of bone formation and resorption, and increased levels of Receptor activator of nuclear factor kappa-B ligand, potentiating osteoclastogenesis. Repetitive unrecognized trauma due to neuropathy increases levels of pro-inflammatory cytokines (interleukin-1Ī², interleukin-6, tumour necrosis factor Ī±) which could also contribute to increased bone resorption, in combination with a pre-inflammatory state, with increased autoimmune reactivity and a profile of monocytes primed to transform into osteoclasts - cluster of differentiation 14 (CD14). Increased blood glucose and loss of circulating Receptor for Advanced Glycation End-Products (AGLEPs), leading to increased non-enzymatic glycation of collagen and accumulation of AGLEPs in the tissues of the foot, may also contribute to the pathological process. An understanding of the relative contributions of each of these mechanisms and a final common pathway for the development of Charcot neuroarthropathy are still lacking. Cite this article: S. E. Johnson-Lynn, A. W. McCaskie, A. P. Coll, A. H. N. Robinson. Neuroarthropathy in diabetes: pathogenesis of Charcot arthropathy. Bone Joint Res 2018;7:373-378. DOI: 10.1302/2046-3758.75.BJR-2017-0334.R1

    A mobile app and dashboard for early detection of infectious disease outbreaks: development study

    Get PDF
    Ā©Euijoon Ahn, Na Liu, Tej Parekh, Ronak Patel, Tanya Baldacchino, Tracy Mullavey, Amanda Robinson, Jinman Kim. Originally published in JMIR Public Health and Surveillance (http://publichealth.jmir.org), 09.03.2021. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Public Health and Surveillance, is properly cited. The complete bibliographic information, a link to the original publication on http://publichealth.jmir.org, as well as this copyright and license information must be included

    Trichuris muris

    Get PDF

    A Korean Female Patient with Thiamine-responsive Pyruvate Dehydrogenase Complex Deficiency Due to a Novel Point Mutation (Y161C)in the PDHA1 Gene

    Get PDF
    Pyruvate dehydrogenase complex (PDHC) deficiency is mostly due to mutations in the X-linked E1Ī± subunit gene (PDHA1). Some of the patients with PDHC deficiency showed clinical improvements with thiamine treatment. We report the results of biochemical and molecular analysis in a female patient with lactic acidemia. The PDHC activity was assayed at different concentrations of thiamine pyrophosphate (TPP). The PDHC activity showed null activity at low TPP concentration (1Ɨ10-3 mM), but significantly increased at a high TPP concentration (1 mM). Sequencing analysis of PDHA1 gene of the patient revealed a substitution of cysteine for tyrosine at position 161 (Y161C). Thiamine treatment resulted in reduction of the patient's serum lactate concentration and dramatic clinical improvement. Biochemical, molecular, and clinical data suggest that this patient has a thiamine-responsive PDHC deficiency due to a novel mutation, Y161C. Therefore, to detect the thiamine responsiveness it is necessary to measure activities of PDHC not only at high but also at low concentration of TPP

    The Significance of the Location of Mutations for the Native-State Dynamics of Human Lysozyme

    Get PDF
    The conversion of human lysozyme into amyloid fibrils is associated with a rare but fatal hereditary form of nonneuropathic systemic amyloidosis. The accumulation of large amounts of aggregated protein is thought to be initiated by the formation of transient intermediate species of disease-related lysozyme variants, essentially due to the loss of global cooperativity under physiologically relevant conditions. Interestingly, all five naturally occurring, amyloidogenic, single-point mutations are located in the Ī²-domain of lysozyme, the region that is predominantly unfolded during the formation of the transient intermediate species. Given the lack of known naturally occurring, amyloidogenic, single-point mutations in the Ī±-domain, we chose three specific mutations to address the effects that location may have on native-state dynamics, as studied by hydrogen-deuterium (HD) exchange experiments analyzed by NMR spectroscopy, and mass spectrometry. We compared the effect of a destabilizing Ī±-domain mutation (I23A) with that of the well-characterized I59T Ī²-domain variant. We also investigated the effect of a mutation that has minor effects on native-state stability at the domain interface (I56V) and compared it with that of a variant with similar stability within the C-helix (I89V). We show that when variants have similar reduced native-state stabilities, the location of the mutation (I23A versus I59T) is crucial to the native-state dynamics, with the Ī±-domain mutation having a significantly lower ability to populate transient intermediate species under physiologically relevant conditions. Interestingly, the mutation at the interface (I56V) has a greater effect in facilitating the formation of transient intermediate species at elevated temperatures compared with the variants containing Ī±-domain mutations, even though this mutation results in only minor changes to the native-state stability of lysozyme. These findings reveal that the location of specific mutations is an important factor in determining the native-stateĀ dynamical properties of human lysozyme in the context of its propensity to populate the aggregation-prone transient intermediate species associated with pathogenic amyloid formation.This research was supported by the Biotechnology and Biological Sciences Research Council (BB/E019927/1 to C.M.D., C.V.R., and J.R.K.), the Medical Research Council (E.D.G. and C.M.D.), the Belgian Program of Interuniversity Attraction Poles administered by the Federal Office for Scientific Technical and Cultural Affairs (PAI numbers P6/19 and P7144 to C.M.D. and M.D.), the European Unionā€™s Sixth Framework Program (LSHM-CT-2006-037525 to C.M.D. and M.D.), and Programme grants from the Wellcome Trust and the Leverhulme Trust (C.M.D.). It was also supported by a Korean Government Scholarship for Overseas Studies (M.A.), the Winston Churchill Foundation (C.L.H.), and Boerhinger Ingleheim funds (A.D.). The NMR facility at the Department of Chemistry, University of Cambridge, is supported in part by an EPSRC Core Capability grant (EP/K039520/1)

    Overview of Asbestos Issues in Korea

    Get PDF
    Asbestos is a carcinogen that causes diseases such as mesothelioma and lung cancer in humans. There was a sharp increase in the use of asbestos in Korea in the 1970s as Korea's economy developed rapidly, and asbestos was only recently banned from use. Despite the ban of its use, previously applied asbestos still causes many problems. A series of asbestos-related events that recently occurred in Korea have caused the general public to become concerned about asbestos. Therefore, it is necessary to take proper action to deal with asbestos-related events, such as mass outbreaks of mesothelioma among residents who lived near asbestos textile factories or asbestos mines. Although there have been no rapid increases in asbestos-related illnesses in Korea to date, such illnesses are expected to increase greatly due to the amount of asbestos used and long latency period. Decreasing the asbestos exposure level to levels as low as possible is the most important step in preventing asbestos-related illnesses in the next few decades. However, there is a lack of specialized facilities for the analysis of asbestos and experts to diagnose and treat asbestos-related illnesses in Korea; therefore, national-level concern and support are required
    • ā€¦
    corecore