168 research outputs found

    Nonlinear Dynamics of Silicon Nanowire Resonator Considering Nonlocal Effect

    Get PDF
    In this work, nonlinear dynamics of silicon nanowire resonator considering nonlocal effect has been investigated. For the first time, dynamical parameters (e.g., resonant frequency, Duffing coefficient, and the damping ratio) that directly influence the nonlinear dynamics of the nanostructure have been derived. Subsequently, by calculating their response with the varied nonlocal coefficient, it is unveiled that the nonlocal effect makes more obvious impacts at the starting range (from zero to a small value), while the impact of nonlocal effect becomes weaker when the nonlocal term reaches to a certain threshold value. Furthermore, to characterize the role played by nonlocal effect in exerting influence on nonlinear behaviors such as bifurcation and chaos (typical phenomena in nonlinear dynamics of nanoscale devices), we have calculated the Lyapunov exponents and bifurcation diagram with and without nonlocal effect, and results shows the nonlocal effect causes the most significant effect as the device is at resonance. This work advances the development of nanowire resonators that are working beyond linear regime

    Interpreting LHC SUSY searches in the phenomenological MSSM

    Get PDF
    We interpret within the phenomenological MSSM (pMSSM) the results of SUSY searches published by the CMS collaboration based on the first ~1 fb^-1 of data taken during the 2011 LHC run at 7 TeV. The pMSSM is a 19-dimensional parametrization of the MSSM that captures most of its phenomenological features. It encompasses, and goes beyond, a broad range of more constrained SUSY models. Performing a global Bayesian analysis, we obtain posterior probability densities of parameters, masses and derived observables. In contrast to constraints derived for particular SUSY breaking schemes, such as the CMSSM, our results provide more generic conclusions on how the current data constrain the MSSM.Comment: 15 pages, 7 figures; minor revision, some references and a comment on prior dependence added; version accepted by JHE

    Imaging of bronchial pathology in antibody deficiency: Data from the European Chest CT Group

    Get PDF
    Studies of chest computed tomography (CT) in patients with primary antibody deficiency syndromes (ADS) suggest a broad range of bronchial pathology. However, there are as yet no multicentre studies to assess the variety of bronchial pathology in this patient group. One of the underlying reasons is the lack of a consensus methodology, a prerequisite to jointly document chest CT findings. We aimed to establish an international platform for the evaluation of bronchial pathology as assessed by chest CT and to describe the range of bronchial pathologies in patients with antibody deficiency. Ffteen immunodeficiency centres from 9 countries evaluated chest CT scans of patients with ADS using a predefined list of potential findings including an extent score for bronchiectasis. Data of 282 patients with ADS were collected. Patients with common variable immunodeficiency disorders (CVID) comprised the largest subgroup (232 patients, 82.3%). Eighty percent of CVID patients had radiological evidence of bronchial pathology including bronchiectasis in 61%, bronchial wall thickening in 44% and mucus plugging in 29%. Bronchiectasis was detected in 44% of CVID patients aged less than 20 years. Cough was a better predictor for bronchiectasis than spirometry values. Delay of diagnosis as well as duration of disease correlated positively with presence of bronchiectasis. The use of consensus diagnostic criteria and a pre-defined list of bronchial pathologies allows for comparison of chest CT data in multicentre studies. Our data suggest a high prevalence of bronchial pathology in CVID due to late diagnosis or duration of disease

    The Role of Glypicans in Wnt Inhibitory Factor-1 Activity and the Structural Basis of Wif1's Effects on Wnt and Hedgehog Signaling

    Get PDF
    Proper assignment of cellular fates relies on correct interpretation of Wnt and Hedgehog (Hh) signals. Members of the Wnt Inhibitory Factor-1 (WIF1) family are secreted modulators of these extracellular signaling pathways. Vertebrate WIF1 binds Wnts and inhibits their signaling, but its Drosophila melanogaster ortholog Shifted (Shf) binds Hh and extends the range of Hh activity in the developing D. melanogaster wing. Shf activity is thought to depend on reinforcing interactions between Hh and glypican HSPGs. Using zebrafish embryos and the heterologous system provided by D. melanogaster wing, we report on the contribution of glypican HSPGs to the Wnt-inhibiting activity of zebrafish Wif1 and on the protein domains responsible for the differences in Wif1 and Shf specificity. We show that Wif1 strengthens interactions between Wnt and glypicans, modulating the biphasic action of glypicans towards Wnt inhibition; conversely, glypicans and the glypican-binding “EGF-like” domains of Wif1 are required for Wif1's full Wnt-inhibiting activity. Chimeric constructs between Wif1 and Shf were used to investigate their specificities for Wnt and Hh signaling. Full Wnt inhibition required the “WIF” domain of Wif1, and the HSPG-binding EGF-like domains of either Wif1 or Shf. Full promotion of Hh signaling requires both the EGF-like domains of Shf and the WIF domains of either Wif1 or Shf. That the Wif1 WIF domain can increase the Hh promoting activity of Shf's EGF domains suggests it is capable of interacting with Hh. In fact, full-length Wif1 affected distribution and signaling of Hh in D. melanogaster, albeit weakly, suggesting a possible role for Wif1 as a modulator of vertebrate Hh signaling

    In Search of the Optimal Surgical Treatment for Velopharyngeal Dysfunction in 22q11.2 Deletion Syndrome: A Systematic Review

    Get PDF
    <div><h3>Background</h3><p>Patients with the 22q11.2 deletion syndrome (22qDS) and velopharyngeal dysfunction (VPD) tend to have residual VPD following surgery. This systematic review seeks to determine whether a particular surgical procedure results in superior speech outcome or less morbidity.</p> <h3>Methodology/ Principal Findings</h3><p>A combined computerized and hand-search yielded 70 studies, of which 27 were deemed relevant for this review, reporting on a total of 525 patients with 22qDS and VPD undergoing surgery for VPD. All studies were levels 2c or 4 evidence. The methodological quality of these studies was assessed using criteria based on the Cochrane Collaboration's tool for assessing risk of bias. Heterogeneous groups of patients were reported on in the studies. The surgical procedure was often tailored to findings on preoperative imaging. Overall, 50% of patients attained normal resonance, 48% attained normal nasal emissions scores, and 83% had understandable speech postoperatively. However, 5% became hyponasal, 1% had obstructive sleep apnea (OSA), and 17% required further surgery. There were no significant differences in speech outcome between patients who underwent a fat injection, Furlow or intravelar veloplasty, pharyngeal flap pharyngoplasty, Honig pharyngoplasty, or sphincter pharyngoplasty or Hynes procedures. There was a trend that a lower percentage of patients attained normal resonance after a fat injection or palatoplasty than after the more obstructive pharyngoplasties (11–18% versus 44–62%, p = 0.08). Only patients who underwent pharyngeal flaps or sphincter pharyngoplasties incurred OSA, yet this was not statistically significantly more often than after other procedures (p = 0.25). More patients who underwent a palatoplasty needed further surgery than those who underwent a pharyngoplasty (50% versus 7–13%, p = 0.03).</p> <h3>Conclusions/ Significance</h3><p>In the heterogeneous group of patients with 22qDS and VPD, a grade C recommendation can be made to minimize the morbidity of further surgery by choosing to perform a pharyngoplasty directly instead of only a palatoplasty.</p> </div

    Relevance of laboratory testing for the diagnosis of primary immunodeficiencies: a review of case-based examples of selected immunodeficiencies

    Get PDF
    The field of primary immunodeficiencies (PIDs) is one of several in the area of clinical immunology that has not been static, but rather has shown exponential growth due to enhanced physician, scientist and patient education and awareness, leading to identification of new diseases, new molecular diagnoses of existing clinical phenotypes, broadening of the spectrum of clinical and phenotypic presentations associated with a single or related gene defects, increased bioinformatics resources, and utilization of advanced diagnostic technology and methodology for disease diagnosis and management resulting in improved outcomes and survival. There are currently over 200 PIDs with at least 170 associated genetic defects identified, with several of these being reported in recent years. The enormous clinical and immunological heterogeneity in the PIDs makes diagnosis challenging, but there is no doubt that early and accurate diagnosis facilitates prompt intervention leading to decreased morbidity and mortality. Diagnosis of PIDs often requires correlation of data obtained from clinical and radiological findings with laboratory immunological analyses and genetic testing. The field of laboratory diagnostic immunology is also rapidly burgeoning, both in terms of novel technologies and applications, and knowledge of human immunology. Over the years, the classification of PIDs has been primarily based on the immunological defect(s) ("immunophenotype") with the relatively recent addition of genotype, though there are clinical classifications as well. There can be substantial overlap in terms of the broad immunophenotype and clinical features between PIDs, and therefore, it is relevant to refine, at a cellular and molecular level, unique immunological defects that allow for a specific and accurate diagnosis. The diagnostic testing armamentarium for PID includes flow cytometry - phenotyping and functional, cellular and molecular assays, protein analysis, and mutation identification by gene sequencing. The complexity and diversity of the laboratory diagnosis of PIDs necessitates many of the above-mentioned tests being performed in highly specialized reference laboratories. Despite these restrictions, there remains an urgent need for improved standardization and optimization of phenotypic and functional flow cytometry and protein-specific assays. A key component in the interpretation of immunological assays is the comparison of patient data to that obtained in a statistically-robust manner from age and gender-matched healthy donors. This review highlights a few of the laboratory assays available for the diagnostic work-up of broad categories of PIDs, based on immunophenotyping, followed by examples of disease-specific testing
    • 

    corecore