131 research outputs found

    The two faces of nanomaterials: A quantification of hormesis in algae and plants

    Get PDF
    The rapid progress in nanotechnology has dramatically promoted the application of engineered nanomaterials in numerous sectors. The wide application of nanomaterials and the potential accumulation in the environment sparked interest in studying the effects of nanomaterials on algae and plants. Hormesis is a dose response phenomenon characterized by a biphasic dose response with a low dose stimulation and a high dose inhibition. This paper quantifies for the first time nanomaterial-induced hormesis in algae and plants. Five hundred hormetic concentration-response relationships were mined from the published literature. The median maximum stimulatory response (MAX) was 123%, and commonly below 200%, of control response. It was also lower in algae than in plants, and occurred commonly at concentrations <100 mg L−1. The no-observed-adverse-effect-level (NOAEL) to MAX ratio was 2.4 for algae and 1.7 for plants, and the two distributions differed significantly. Ag nanoparticles induced higher MAX than TiO2 and ZnO nanoparticles. The MAX varied upon nanomaterial application methods, growth stage of application (seed versus vegetative), type of endpoint and time window. While nanomaterial size did not affect significantly the MAX, sizes ≤50 nm appeared to have lower NOAEL:MAX ratio than sizes ≥100 nm, suggesting higher risks from incorrect application. The mechanisms underlying nanomaterial-induced hormetic concentration responses are discussed. This paper provides a strong foundation for enhancing research protocols of studies on nanomaterial effects on algae and plants as well as for incorporating hormesis into the risk assessment practices. Keywords: Agricultural sustainability, Environmental pollution, Hormesis, Nanoparticles, Preconditioning, Primin

    Chloroquine commonly induces hormetic dose responses

    Get PDF
    The use of chloroquine in the treatment of COVID-19 has received considerable attention. The recent intense focus on this application of chloroquine stimulated an investigation into the effects of chloroquine at low doses on highly biologically-diverse models and whether it may induce hormetic-biphasic dose response effects. The assessment revealed that hormetic effects have been commonly induced by chloroquine, affecting numerous cell types, including tumor cell lines (e.g. human breast and colon) and non-tumor cell lines, enhancing viral replication, spermmotility, various behavioral endpoints aswell as decreasing risks of convulsions, and enhancing a spectrum of neuroprotective responses within a preconditioning experimental framework. These diverse and complex findings indicate that hormetic dose responses commonly occur with chloroquine treatment with a range of biologicalmodels and endpoints. These findings have implications concerning study design features including the number and spacing of doses, and suggest a range of possible clinical concerns and opportunities depending on the endpoint considered. (C) 2020 Elsevier B.V. All rights reserved

    Ozone affects plant, insect, and soil microbial communities: A threat to terrestrial ecosystems and biodiversity

    Get PDF
    Elevated tropospheric ozone concentrations induce adverse effects in plants. We reviewed how ozone affects (i) the composition and diversity of plant communities by affecting key physiological traits; (ii) foliar chemistry and the emission of volatiles, thereby affecting plant-plant competition, plant-insect interactions, and the composition of insect communities; and (iii) plant-soil-microbe interactions and the composition of soil communities by disrupting plant litterfall and altering root exudation, soil enzymatic activities, decomposition, and nutrient cycling. The community composition of soil microbes is consequently changed, and alpha diversity is often reduced. The effects depend on the environment and vary across space and time. We suggest that Atlantic islands in the Northern Hemisphere, the Mediterranean Basin, equatorial Africa, Ethiopia, the Indian coastline, the Himalayan region, southern Asia, and Japan have high endemic richness at high ozone risk by 2100

    Do changes in Lactuca sativa metabolic performance, induced by mycorrhizal symbionts and leaf UV-B irradiation, play a role towards tolerance to a polyphagous insect pest?

    Get PDF
    : The increased ultraviolet radiation (UV) due to the altered stratospheric ozone leads to multiple plant physiological and biochemical adaptations, likely affecting their interaction with other organisms, such as pests and pathogens. Arbuscular mycorrhizal fungi (AMF) and UV-B treatment can be used as eco-friendly techniques to protect crops from pests by activating plant mechanisms of resistance. In this study, we investigated plant (Lactuca sativa) response to UV-B exposure and Funneliformis mosseae (IMA1) inoculation as well as the role of a major insect&nbsp;pest, Spodoptera littoralis. Lettuce plants exposed to UV-B were heavier and taller than non-irradiated ones. A considerable enrichment in phenolic, flavonoid, anthocyanin, and carotenoid contents and antioxidant capacity, along with redder and more homogenous leaf color, were also observed in UV-B-treated but not in AMF-inoculated plants. Biometric and biochemical data did not differ between AMF and non-AMF plants. AMF-inoculated plants showed hyphae, arbuscules, vesicles, and spores in their roots. AMF colonization levels were not affected by UV-B irradiation. No changes in S. littoralis-feeding behavior towards treated and untreated plants were observed, suggesting the ability of this generalist herbivore to overcome the plant chemical defenses boosted by UV-B exposure. The results of this multi-factorial study shed light on how polyphagous insect pests can cope with multiple plant physiological and biochemical adaptations following biotic and abiotic preconditioning

    Ozone affects plant, insect, and soil microbial communities: a threat to terrestrial ecosystems and biodiversity

    Get PDF
    Elevated tropospheric ozone concentrations induce adverse effects in plants. We reviewed how ozone affects (i) the composition and diversity of plant communities by affecting key physiological traits; (ii) foliar chemistry and the emission of volatiles, thereby affecting plant-plant competition, plant-insect interactions, and the composition of insect communities; and (iii) plant-soil-microbe interactions and the composition of soil communities by disrupting plant litterfall and altering root exudation, soil enzymatic activities, decomposition, and nutrient cycling. The community composition of soil microbes is consequently changed, and alpha diversity is often reduced. The effects depend on the environment and vary across space and time. We suggest that Atlantic islands in the Northern Hemisphere, the Mediterranean Basin, equatorial Africa, Ethiopia, the Indian coastline, the Himalayan region, southern Asia, and Japan have high endemic richness at high ozone risk by 2100

    Climate change : strategies for mitigation and adaptation

    Get PDF
    The sustainability of life on Earth is under increasing threat due to humaninduced climate change. This perilous change in the Earth's climate is caused by increases in carbon dioxide and other greenhouse gases in the atmosphere, primarily due to emissions associated with burning fossil fuels. Over the next two to three decades, the effects of climate change, such as heatwaves, wildfires, droughts, storms, and floods, are expected to worsen, posing greater risks to human health and global stability. These trends call for the implementation of mitigation and adaptation strategies. Pollution and environmental degradation exacerbate existing problems and make people and nature more susceptible to the effects of climate change. In this review, we examine the current state of global climate change from different perspectives. We summarize evidence of climate change in Earth’s spheres, discuss emission pathways and drivers of climate change, and analyze the impact of climate change on environmental and human health. We also explore strategies for climate change mitigation and adaptation and highlight key challenges for reversing and adapting to global climate change

    Strategic roadmap to assess forest vulnerability under air pollution and climate change

    Get PDF
    Although it is an integral part of global change, most of the research addressing the effects of climate change on forests have overlooked the role of environmental pollution. Similarly, most studies investigating the effects of air pollutants on forests have generally neglected the impacts of climate change. We review the current knowledge on combined air pollution and climate change effects on global forest ecosystems and identify several key research priorities as a roadmap for the future. Specifically, we recommend (1) the establishment of much denser array of monitoring sites, particularly in the South Hemisphere; (2) further integration of ground and satellite monitoring; (3) generation of flux-based standards and critical levels taking into account the sensitivity of dominant forest tree species; (4) long-term monitoring of N, S, P cycles and base cations deposition together at global scale; (5) intensification of experimental studies, addressing the combined effects of different abiotic factors on forests by assuring a better representation of taxonomic and functional diversity across the similar to 73,000 tree species on Earth; (6) more experimental focus on phenomics and genomics; (7) improved knowledge on key processes regulating the dynamics of radionuclides in forest systems; and (8) development of models integrating air pollution and climate change data from long-term monitoring programs.</p
    corecore