1,415 research outputs found

    Direct entropy determination and application to artificial spin ice

    Full text link
    From thermodynamic origins, the concept of entropy has expanded to a range of statistical measures of uncertainty, which may still be thermodynamically significant. However, laboratory measurements of entropy continue to rely on direct measurements of heat. New technologies that can map out myriads of microscopic degrees of freedom suggest direct determination of configurational entropy by counting in systems where it is thermodynamically inaccessible, such as granular and colloidal materials, proteins and lithographically fabricated nanometre-scale arrays. Here, we demonstrate a conditional-probability technique to calculate entropy densities of translation-invariant states on lattices using limited configuration data on small clusters, and apply it to arrays of interacting nanometre-scale magnetic islands (artificial spin ice). Models for statistically disordered systems can be assessed by applying the method to relative entropy densities. For artificial spin ice, this analysis shows that nearest-neighbour correlations drive longer-range ones.Comment: 10 page

    Literature-based discovery of diabetes- and ROS-related targets

    Get PDF
    Abstract Background Reactive oxygen species (ROS) are known mediators of cellular damage in multiple diseases including diabetic complications. Despite its importance, no comprehensive database is currently available for the genes associated with ROS. Methods We present ROS- and diabetes-related targets (genes/proteins) collected from the biomedical literature through a text mining technology. A web-based literature mining tool, SciMiner, was applied to 1,154 biomedical papers indexed with diabetes and ROS by PubMed to identify relevant targets. Over-represented targets in the ROS-diabetes literature were obtained through comparisons against randomly selected literature. The expression levels of nine genes, selected from the top ranked ROS-diabetes set, were measured in the dorsal root ganglia (DRG) of diabetic and non-diabetic DBA/2J mice in order to evaluate the biological relevance of literature-derived targets in the pathogenesis of diabetic neuropathy. Results SciMiner identified 1,026 ROS- and diabetes-related targets from the 1,154 biomedical papers (http://jdrf.neurology.med.umich.edu/ROSDiabetes/). Fifty-three targets were significantly over-represented in the ROS-diabetes literature compared to randomly selected literature. These over-represented targets included well-known members of the oxidative stress response including catalase, the NADPH oxidase family, and the superoxide dismutase family of proteins. Eight of the nine selected genes exhibited significant differential expression between diabetic and non-diabetic mice. For six genes, the direction of expression change in diabetes paralleled enhanced oxidative stress in the DRG. Conclusions Literature mining compiled ROS-diabetes related targets from the biomedical literature and led us to evaluate the biological relevance of selected targets in the pathogenesis of diabetic neuropathy.http://deepblue.lib.umich.edu/bitstream/2027.42/78315/1/1755-8794-3-49.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/2/1755-8794-3-49-S7.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/3/1755-8794-3-49-S10.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/4/1755-8794-3-49-S8.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/5/1755-8794-3-49-S3.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/6/1755-8794-3-49-S1.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/7/1755-8794-3-49-S4.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/8/1755-8794-3-49-S2.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/9/1755-8794-3-49-S12.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/10/1755-8794-3-49-S11.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/11/1755-8794-3-49-S9.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/12/1755-8794-3-49-S5.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/13/1755-8794-3-49-S6.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/14/1755-8794-3-49.pdfPeer Reviewe

    Mitochondrial isolation: when size matters

    Get PDF
    Mitochondrial vitality is critical to cellular function, with mitochondrial dysfunction linked to a growing number of human diseases. Tissue and cellular heterogeneity, in terms of genetics, dynamics and function means that increasingly mitochondrial research is conducted at the single cell level. Whilst there are several technologies that are currently available for single-cell analysis, each with their advantages, they cannot be easily adapted to study mitochondria with subcellular resolution. Here we review the current techniques and strategies for mitochondrial isolation, critically discussing each technology’s limitations for future mitochondrial research. Finally, we highlight and discuss the recent breakthroughs in sub-cellular isolation techniques, with a particular focus on nanotechnologies that enable the isolation of mitochondria from subcellular compartments. This allows isolation of mitochondria with unprecedented spatial precision with minimal disruption to mitochondria and their immediate cellular environment

    Good Vibrations : The evolution of whisking in small mammals

    Get PDF
    Special Issue: Extreme Anatomy: Living Beyond the Edge. January 2020Abstract While most mammals have whiskers, some tactile specialists - mainly small, nocturnal and arboreal species - can actively move their whiskers in a symmetrical, cyclic movement called whisking. Whisking enables mammals to rapidly, tactually scan their environment in order to efficiently guide locomotion and foraging in complex habitats. The muscle architecture that enables whisking is preserved from marsupials to primates, prompting researchers to suggest that a common ancestor might have had moveable whiskers. Studying the evolution of whisker touch sensing is difficult, and we suggest that measuring an aspect of skull morphology that correlates with whisking would enable comparisons between extinct and extant mammals. We find that whisking mammals have larger infraorbital foramen (IOF) areas, which indicates larger infraorbital nerves and an increase in sensory acuity. While this relationship is quite variable and IOF area cannot be used to solely predict the presence of whisking, whisking mammals all have large IOF areas. Generally, this pattern holds true regardless of an animal's substrate preferences or activity patterns. Data from fossil mammals and ancestral character state reconstruction and tracing techniques for extant mammals suggest that whisking is not the ancestral state for therian mammals. Instead, whisking appears to have evolved independently as many as seven times across the clades Marsupialia, Afrosoricida, Eulipotyphla and Rodentia, with Xenarthra the only placental superordinal clade lacking whisking species. However, the term whisking only captures symmetrical and rhythmic movements of the whiskers, rather than all possible whisker movements, and early mammals may still have had moveable whiskers. This article is protected by copyright. All rights reserved.Peer reviewe

    Characterisation of silent and active genes for a variable large protein of Borrelia recurrentis

    Get PDF
    BACKGROUND: We report the characterisation of the variable large protein (vlp) gene expressed by clinical isolate A1 of Borrelia recurrentis; the agent of the life-threatening disease louse-borne relapsing fever. METHODS: The major vlp protein of this isolate was characterised and a DNA probe created. Use of this together with standard molecular methods was used to determine the location of the vlp1(B. recurrentis A1) gene in both this and other isolates. RESULTS: This isolate was found to carry silent and expressed copies of the vlp1(B. recurrentis A1) gene on plasmids of 54 kbp and 24 kbp respectively, whereas a different isolate, A17, had only the silent vlp1(B. recurrentis A17) on a 54 kbp plasmid. Silent and expressed vlp1 have identical mature protein coding regions but have different 5' regions, both containing different potential lipoprotein leader sequences. Only one form of vlp1 is transcribed in the A1 isolate of B. recurrentis, yet both 5' upstream sequences of this vlp1 gene possess features of bacterial promoters. CONCLUSION: Taken together these results suggest that antigenic variation in B. recurrentis may result from recombination of variable large and small protein genes at the junction between lipoprotein leader sequence and mature protein coding region. However, this hypothetical model needs to be validated by further identification of expressed and silent variant protein genes in other B. recurrentis isolates

    AChR deficiency due to ε-subunit mutations: two common mutations in the Netherlands

    Get PDF
    Congenital myasthenic syndromes are a clinically and genetically heterogeneous group of hereditary disorders affecting neuromuscular transmission. We have identified mutations within the acetylcholine receptor (AChR) ε-subunit gene underlying congenital myasthenic syndromes in nine patients (seven kinships) of Dutch origin. Previously reported mutations ε1369delG and εR311Q were found to be common; ε1369delG was present on at least one allele in seven of the nine patients, and εR311Q in six. Phenotypes ranged from relatively mild ptosis and external ophthalmoplegia to generalized myasthenia. The common occurrence of εR311Q and ε1369delG suggests a possible founder for each of these mutations originating in North Western Europe, possibly in Holland. Knowledge of the ethnic or geographic origin within Europe of AChR deficiency patients can help in targeting genetic screening and it may be possible to provide a rapid genetic diagnosis for patients of Dutch origin by screening first for εR311Q and ε1369delG

    Effect of electromagnetic dipole dark matter on energy transport in the solar interior

    Get PDF
    In recent years, a revised set of solar abundances has led to a discrepancy in the sound-speed profile between helioseismology and theoretical solar models. Conventional solutions require additional mechanisms for energy transport within the Sun. Vincent et al. have recently suggested that dark matter with a momentum or velocity dependent cross section could provide a solution. In this work, we consider three models of dark matter with such cross sections and their effect on the stellar structure. In particular, the three models incorporate dark matter particles interacting through an electromagnetic dipole moment: an electric dipole, a magnetic dipole or an anapole. Each model is implemented in the DarkStec stellar evolution program, which incorporates the effects of dark matter capture and heat transport within the solar interior. We show that dark matter with an anapole moment of ~ 1 GeV−2 or magnetic dipole moment of ~ 10−3μp can improve the sound-speed profile, small frequency separations and convective zone radius with respect to the Standard Solar Model. However, the required dipole moments are strongly excluded by direct detection experiments

    Cost-effectiveness of HBV and HCV screening strategies:a systematic review of existing modelling techniques

    Get PDF
    Introduction: Studies evaluating the cost-effectiveness of screening for Hepatitis B Virus (HBV) and Hepatitis C Virus (HCV) are generally heterogeneous in terms of risk groups, settings, screening intervention, outcomes and the economic modelling framework. It is therefore difficult to compare cost-effectiveness results between studies. This systematic review aims to summarise and critically assess existing economic models for HBV and HCV in order to identify the main methodological differences in modelling approaches. Methods: A structured search strategy was developed and a systematic review carried out. A critical assessment of the decision-analytic models was carried out according to the guidelines and framework developed for assessment of decision-analytic models in Health Technology Assessment of health care interventions. Results: The overall approach to analysing the cost-effectiveness of screening strategies was found to be broadly consistent for HBV and HCV. However, modelling parameters and related structure differed between models, producing different results. More recent publications performed better against a performance matrix, evaluating model components and methodology. Conclusion: When assessing screening strategies for HBV and HCV infection, the focus should be on more recent studies, which applied the latest treatment regimes, test methods and had better and more complete data on which to base their models. In addition to parameter selection and associated assumptions, careful consideration of dynamic versus static modelling is recommended. Future research may want to focus on these methodological issues. In addition, the ability to evaluate screening strategies for multiple infectious diseases, (HCV and HIV at the same time) might prove important for decision makers

    A large animal model of RDH5-associated retinopathy recapitulates important features of the human phenotype

    Get PDF
    Pathogenic variants in retinol dehydrogenase 5 (RDH5) attenuate supply of 11-cis-retinal to photoreceptors leading to a range of clinical phenotypes including night blindness due to markedly slowed rod dark adaptation and in some patients, macular atrophy. Current animal models (such as Rdh5-/- mice) fail to recapitulate the functional or degenerative phenotype. Addressing this need for a relevant animal model we present a new domestic cat model with a loss-of-function missense mutation in RDH5 (c.542G > T; p.Gly181Val). As with patients, affected cats have a marked delay in recovery of dark adaptation. Additionally, the cats develop a degeneration of the area centralis (equivalent to the human macula). This recapitulates the development of macular atrophy that is reported in a subset of patients with RDH5 mutations and is shown in this paper in 7 patients with biallelic RDH5 mutations. There is notable variability in the age at onset of the area centralis changes in the cat, with most developing changes as juveniles but some not showing changes over the first few years of age. There is similar variability in development of macular atrophy in patients and while age is a risk factor, it is hypothesized that genetic modifying loci influence disease severity, and we suspect the same is true in the cat model. This novel cat model provides opportunities to improve molecular understanding of macular atrophy and test therapeutic interventions for RDH5-associated retinopathies
    corecore