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Abstract 
Mitochondrial vitality is critical to cellular function, with mitochondrial 
dysfunction linked to a growing number of human diseases. Tissue 
and cellular heterogeneity, in terms of genetics, dynamics and 
function means that increasingly mitochondrial research is conducted 
at the single cell level. Whilst there are several technologies that are 
currently available for single-cell analysis, each with their advantages, 
they cannot be easily adapted to study mitochondria with subcellular 
resolution. Here we review the current techniques and strategies for 
mitochondrial isolation, critically discussing each technology’s 
limitations for future mitochondrial research. Finally, we highlight and 
discuss the recent breakthroughs in sub-cellular isolation techniques, 
with a particular focus on nanotechnologies that enable the isolation 
of mitochondria from subcellular compartments. This allows isolation 
of mitochondria with unprecedented spatial precision with minimal 
disruption to mitochondria and their immediate cellular environment.
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Introduction
Mitochondrial genetics
The mitochondrial genome consists of multiple double-stranded, 
circular DNA molecules (Anderson et al., 1981; Andrews et al.,  
1999). In healthy individuals the default state of the mitochon-
drial genome is that of homoplasmy, where only wild-type 
mitochondrial DNA (mtDNA) exists. Low levels of mtDNA 
heterogeneity as a result of de novo mutations, termed hetero-
plasmy, is not deleterious since the polyploid nature of the mito-
chondrial genome buffers low levels of heteroplasmy (Payne  
et al., 2013). However, clonal expansion of mutant mtDNA above 
a threshold level, results in biochemical defects and disease  
(Payne et al., 2013; Rossignol et al., 2003). Over a life-course it is 
believed that clonal expansion of mtDNA point mutations occurs 
through random genetic drift in both germline and mitotic somatic 
cells (Greaves et al., 2014); as well as in post-mitotic cells, facili-
tated by relaxed mtDNA replication, which can explain the long-
time required for a threshold level to be reached as observed in 
age-related disease (Elson et al., 2001). In comparison, it is sug-
gested that some degree of selection influences clonal expansion  
of mtDNA deletions, acting in conjunction or independently 
of random genetic drift (Lawless et al., 2020). Asides from ran-
dom genetic drift, two alternative theories of clonal expan-
sion of mtDNA deletions are the ‘negative feedback loop’ and  
‘perinuclear niche’ theories (Kowald & Kirkwood, 2014; Vin-
cent et al., 2018). The non-uniform nature of mtDNA deletions 
suggests deletion of a single locus, leading to impaired feedback 
of polymerase γ activity, is unlikely to be solely responsible for 
clonal expansion of mtDNA deletions (Damas et al., 2014), whilst 
the contribution of retrograde signalling within the ‘perinculear theory’ 
requires further investigation (Lawless et al., 2020). To elucidate 
the mechanism of clonal expansion of mtDNA mutations, further 
investigation of mtDNA heterogeneity at the tissue, single-cell  
and subcellular level is necessary (Lawless et al., 2020). 

Mitochondrial disease and heterogeneity
Clonally expanded mtDNA mutations cause mitochondrial  
disease in one of two forms: primary, due to inherited mtDNA  
mutations and acquired, due to nuclear DNA mutations that 
lead to mtDNA mutation formation throughout life, as a 
result of impaired mtDNA maintenance (Alston et al., 2017; 
Trifunovic et al., 2004). Primary mitochondrial disease, 
caused by inherited mtDNA mutations, has a variable age 
of onset and has a range of different presentations (Gorman  
et al., 2016). In contrast, acquired mitochondrial disease, result-
ing from clonal expansion of sporadic mtDNA mutations, 
typically begins in adult life and causes progressive external 

ophthalmoplegia often with additional myopathic and neurode-
generative symptoms (Alston et al., 2017); or neurodegeneration  
associated with advanced age (Bender et al., 2006; Trifunovic  
et al., 2004).

Mitochondrial disease often expresses mosaicism in oxidative  
phosphorylation (OXPHOS) deficiency at the organ and tis-
sue level, caused by cellular heterogeneity in mtDNA (Ahmed 
et al., 2018). Mitochondrial heterogeneity exists as either 
genetic or non-genetic heterogeneity (Aryaman et al., 2019). 
Sources of genetic heterogeneity associated with mitochon-
drial disease include mtDNA copy number, which is depleted 
in OXPHOS deficient skeletal muscle fibres (Lehmann  
et al., 2019) and in Parkinson’s disease (PD) substantia nigra  
(SN) neurons but elevated in aged control SN neurons, possibly  
indicative of a neuroprotective mechanism that is overwhelmed 
in PD (Chen et al., 2020; Lehmann et al., 2019). Genetic hetero-
geneity is also observed in elevated intercellular heteroplasmy, 
corresponding with oxidative phosphorylation (OXPHOS) 
deficiency between skeletal muscle fibres, colonic crypt cells 
and PD SN neurons (Lehmann et al., 2019; Greaves et al., 2014 
and Bender et al., 2006) but also localised intracellular het-
eroplasmy within skeletal muscle fibres and PD SN neurons 
(Reeve et al., 2018; Vincent et al., 2018).

Non-genetic heterogeneity is observed in morphology, mem-
brane potential and dynamics (Kuznetsov & Margreiter, 2009). 
Mitochondrial heterogeneity can be physiological, due to dif-
ferent subcellular roles of mitochondrial subpopulations. In 
skeletal muscle, intermyofibrillar mitochondria have a more 
complex structure, likely to facilitate the contractile movement 
of muscle fibres (Kuznetsov & Margreiter, 2009; Vincent et al.,  
2019). In contrast, subsarcolemmal mitochondria are more 
punctate mitochondria and have a lower capacity for OXPHOS 
(Lai et al., 2019), but are likely to be involved in mito- 
nuclear signalling (Paszkiewicz et al., 2017). It is also sug-
gested synaptic mitochondria subpopulations have different 
proteomic profiles compared with non-synaptic mitochondria, 
notably in complex I expression, resulting in a smaller, punctate 
mitochondrial morphology and may modulate ATP supply for synaptic 
transmission and Ca2+ buffering (Graham et al., 2017). This 
proteomic heterogeneity, however, may also make synaptic 
mitochondria more vulnerable to OXPHOS deficiency and 
increased synaptic mitochondria density may serve as a com-
pensatory mechanism, as observed in neurodegenerative disease 
(Graham et al., 2017; Reeve et al., 2018). Membrane potential 
(Ψm) also expresses intercellular heterogeneity based on specific 
cell functions, such as in pancreatic β cells in response to ele-
vated glucose and ATPase activity. Highly metabolic cells 
also tend to have a higher Ψm and likewise cellular regions 
with variable metabolic demands express localised Ψm 
heterogeneity (Wikstrom et al., 2009). In neurodegeneration, 
it has been proposed that dysfunctional, depolarised mito-
chondria are selectively transported towards the cell body for 
degradation, whilst healthy mitochondria populate areas of 
greatest ATP demand (Miller & Sheetz, 2004). Genetic hetero-
geneity is suggested to impact on non-genetic heterogeneity and 
that mtDNA might locally modulate cristae remodelling and  
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respiratory chain complex structure (Busch et al., 2014), equally 
non-genetic factors may affect mtDNA heterogeneity through 
mitochondrial dynamics and Ψm depolarisation modulating 
selective degradation of mitochondria harbouring high levels 
of heteroplasmy (Wikstrom et al., 2009). Precise sampling of 
mitochondria from within subcellular localisations, to supple-
ment existing data from studies at the single-cell and tissue 
level, would provide insight not only into mtDNA heterogeneity 
but also how this influences heterogeneity in mitochondrial 
structure, function and dynamics in health and disease.

Studying mitochondrial subpopulations
There is still much we do not understand about mitochon-
drial heterogeneity. Investigating mitochondrial heterogene-
ity at the inter- and intracellular level, will provide insight into 
other key outstanding questions within the mitochondrial field  
(Aryaman et al., 2019; Lawless et al., 2020). What is the physi-
ological role of intracellular heterogeneity? What differences 
exist between inherited and acquired mtDNA mutations? What 
interplay exists between genetic and non-genetic heterogeneity? 
Historically, mitochondrial fractionation techniques were used 
and remain popular due to being well characterised and reliable; 
despite being laborious, resource intensive and potentially damag-
ing to mitochondria (Liao et al., 2020). When selecting a method 
of mitochondrial isolation, in addition to mitochondrial purity, 
function and yield; efficiency, downstream analyses and sample 
should be considered. Whilst cell lines are more readily manipu-
latable and enable longitudinal studies (Lawless et al., 2020), 
disease burden is better characterised in tissue, which also has  
greater clinical relevance (Ahmed et al., 2018; Chen et al., 2020; 
Grady et al., 2018; Spinazzi et al., 2012). In tissue, some foci of 
deficiency measure as little as 10µm in diameter (Vincent et al., 
2018) and accurate sampling of individual foci would be chal-
lenging using current techniques. The purpose of this review 
is to critically discuss the advancement and application of dif-
ferent techniques for mitochondrial isolation. This review will 
also highlight the recent development of micro- and nanoscale 
techniques, allowing isolation of mitochondria at the cellular  
and subcellular level.

Macroscale mitochondrial isolation
Macroscale mitochondrial isolation entails the release of mito-
chondria from organs or large tissue samples through physical 
disruption. This is achieved through manual homogenisation, 
although low reproducibility and the degree of skill required 
affect mitochondrial integrity and yield of mitochondria (Lai  
et al., 2019). Subcellular fractionation, through homogenisation 
followed by centrifugation, is a traditional and well-established 
means of reliably acquiring a high-yield mitochondrial fraction. 
To overcome some of the noted limitations of centrifugation-based 
methods of mitochondrial isolation, a number of alternative mac-
roscale techniques have been developed for use with, or instead 
of, differential or density gradient centrifugation (Gauthier &  
Lazure, 2014).

Centrifugation
Differential centrifugation (DC) and density gradient centrifu-
gation (DGC) are used to fractionate organelles, including mito-
chondria, based on mass and sedimentary characteristics. Cell 

or tissue homogenate is centrifuged at increasing velocities and, 
in DGC, through a series of increasingly dense media bands  
(Liao et al., 2020). DGC produces a purer fraction but a lower 
mitochondrial yield, relative to DC, though yield and mitochon-
drial integrity may be improved using detergents and reducing 
the homogenisation and centrifugation speed (Lai et al., 2019). 
These methods of ‘mitochondrial fractionation’ are both reli-
able, acquire highly functional mitochondria and are well char-
acterised in the literature but have a high resource and time cost. 
Dependent on the nature of the study, using DC alone may be 
preferable in obtaining a higher yield despite sacrificing mito-
chondrial purity. Centrifugation methods do remain the most 
popular methods of large-scale mitochondrial isolation however  
post-centrifugation methods are seeing an increase in usage, such  
as affinity purification (Liao et al., 2020).

Affinity purification
Affinity purification (AP) captures mitochondria, through the 
adhesion of mitochondrial surface proteins (Ru et al., 2012), to 
magnetic bead-conjugated antibodies which are retained within 
a magnetic field. In addition to favourable yield and purity, AP 
allows isolation of mitochondrial subpopulations, even without 
centrifugation (Ahier et al., 2018; Hornig-Do et al., 2009; Hubbard  
et al., 2019) and has a low sample requirement and run time  
(Ru et al., 2012). AP does have a high reagent cost and is less 
well established than DC or DGC but with continued develop-
ment it is suggested that AP could succeed DGC as the preemi-
nent method of large-scale mitochondrial isolation and AP is 
particularly advantageous for isolating mitochondrial subpopula-
tions from homogenate (Afanasyeva et al., 2018; Hubbard et al.,  
2019).

Flourescence activated organelle sorting
Following detection of a fluorescent label, including dyes or  
reporter genes (Ashley et al., 2005; Cohen & Fox, 2001; Floros 
et al., 2018), fluorescence activated organelle sorting (FAOS) is 
able to isolate mitochondria from other organelles or mitochon-
drial subpopulations by assigning mitochondria, separated into 
individual droplets, a specific charge (Cavelier et al., 2000). FAOS 
enables isolation of a higher yield of functional, purified mitochon-
drial subpopulations reducing the starting material requirement 
(Daniele et al., 2016; Gauthier & Lazure, 2014). A consideration 
when using FAOS is dye cytotoxicity, however, the increasing 
number of available dyes should allow substitution of potentially 
toxic dyes (Barteneva et al., 2014); nevertheless, fluorescent 
dyes may still lead to mitochondrial aggregation and overestima-
tion of mtDNA copy number (Pflugradt et al., 2011). FAOS is 
best utilised for high-throughput and high-yield mitochondrial  
isolation from larger samples (Poe et al., 2006).

Electrophoresis and field-flow fractionation
Capillary electrophoresis (CE), free-flow electrophoresis (FFE) 
and field-flow fractionation (FFF) techniques also separate sub-
populations of organelles based on sedimentary characteristics. 
Samples are carried along a channel by a laminar flow and in 
CE and FFE, organelles are separated based on their isoelectric 
point, through application of an electric field (Poe et al., 2006;  
Zischka et al., 2006), whilst FFF utilises a perpendicular cross flow 
to separate particles based on size and mass (Yang et al., 2015). 
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FFE is shown to be more time efficient and able to produce a purer 
but smaller yield, however, equipment cost was higher compared 
with DGC (Hartwig et al., 2009). There is consensus in the lit-
erature that FFE is optimally used in conjunction with DGC 
and for use in studies where high-throughput and mitochondrial  
fraction purity are more desirable than a higher mitochondrial 
yield (Islinger et al., 2018; Zischka et al., 2006). Compared with 
FFE, CE-LIF (capillary electrophoresis -laser-induced fluores-
cence) has a lower throughput but requires less starting material, 
and has a better signal-to-noise ratio compared with FAOS  
(Kostal et al., 2009; Poe et al., 2006). A limitation of 
CE-LIF is mitochondria retention within the fine capillary 
tube, which can impact on yield and, like FFE, is best used 
when purity is preferable to high yield (Poe et al., 2010). FFF 
has the highest working range of the techniques reviewed and 
does not require mitochondrial labelling (Kang et al., 2008;  
Reschiglian et al., 2005; Yang et al., 2015). Whilst isolation of 
mitochondrial subpopulations was demonstrated with FFF, iso-
lated fractions were highly contaminated and with no direct 
comparison of yield relative to DGC, it is difficult to deter-
mine the practicability of FFF for mitochondrial isolation. 
Unlike FFE and CE, FFF is best used when rapid acquisition of 
a high mitochondrial yield is required at the expense of purity  
(Kang et al., 2008).

Overview of macroscale mitochondrial isolation 
techniques
Macroscale methods, incorporating centrifugation, remain the 
gold standard for high throughput, large-scale mitochondrial 
isolation but are limited by high time and resource demands, 
coupled with limited separation of mitochondrial subpopula-
tions (Lai et al., 2019; Liao et al., 2020) (Table 1). Combining  
DGC or DC with post-fractionation purification, isolation of  
purified mitochondrial subpopulations is possible but at the risk 
of increasing the run time, sacrificing purity or impacting on 
mitochondrial vitality or function. Additionally, these techniques 
cannot provide information on cellular provenance or allow  
longitudinal studies, due to the necessity of cell lysis. Whilst  
macroscale techniques excel at investigating mitochondrial  
heterogenity at the tissue level, to study patterns of mitochondrial 
heterogeneity and dysfunction at the cellular and sub-cellular  
level, low-throughput analysis of smaller samples is likely to be 
more appropriate (Picard et al., 2011).

Microscale and nanoscale mitochondrial isolation
Whilst mitochondrial heterogeneity does exist at the single 
and subcellular level, until relatively recently there has been a  
distinct lack of techniques capable of effective subcellular manip-
ulation. Previous methods enabling mechanical penetration of 
cells relied on micropipettes which are inclined to cause physical 
trauma to the cell and lack the spatio-temporal control required 
for subcellular sampling. Use of microfluidics and nanoprobes 
offer a less damaging and more controlled means of sampling 
of organelles such as mitochondria (Kang et al., 2016) (Table 2  
and Table 3).

Microfluidics
Microfluidic analogues of macro-techniques, including micro-AP, 
micro-FFF, and micro-FFE, have been developed for the  

isolation of mitochondria (Kostal et al., 2009; Kayo et al., 2013; 
Lu et al., 2004). Microfluidic isolation methods also exist that 
trap mitochondria through geometric traps, such as the nanohole 
array (Kumar et al., 2015). Not only are microfluidic assays  
more resource efficient, they are less disruptive to the physiologi-
cal organelle environment, cause less physical trauma to cells and 
organelles and provide more representative results (Kang et al., 
2016; Moutaux et al., 2018). Whilst ‘ Mito-magento’, a micro-AP 
variant, forgoes the need for immunoprecipitation and minimises 
the risk of clogging, which can impact on yield, nanoparticle 
toxicity to cells and mitochondria is not ruled out (Banik et al.,  
2016; Tesauro et al., 2017; Yarjanli et al., 2017). Microfluidic 
techniques have a much lower yield and do not allow insight 
into the subcellular location of mitochondrial subpopulations or 
facilitate longitudinal analysis. Microfluidic techniques are best 
suited to high-throughput isolation of pure and highly functional  
mitochondrial fractions from a limited amount of starting  
material.

Nano-fluorescence activated mitochondrial sorting
FAOS is generally optimised to isolate mitochondria from larger 
samples (Daniele et al., 2016). Nano-fluorescence activated  
mitochondrial sorting (nFAMS) utilises a microfluidic chip device 
with confocal microscopy. Application of a small voltage allows 
sorting of mitochondrial subpopulations with minimal impact 
to viability whilst achieving a high throughput, yield and purity 
(MacDonald et al., 2019; Schiro et al., 2012). It is noted single 
molecule PCR may be more applicable to enrichment of smaller 
mtDNA concentrations, obtained using nFAMS and similar for-
mats, to avoid PCR errors (Kraytsberg et al., 2008; MacDonald  
et al., 2019). Respiratory function assays did show that isolated 
mitochondria were highly functional, however, like the other 
techniques discussed so far, obligatory cell lysis also means that 
obtaining information on cell provenance and serial sampling  
are not possible with nFAMS (MacDonald et al., 2019).

Laser-capture microdissection and optical tweezers
Laser capture microdissection (LCM) allows for single-cell 
isolation by cutting around a delinated cell using a ‘train’ of 
sequential nanosecond pulses from a nitrogen laser. Transloca-
tion and capture is either gravity assisted or through laser pulse 
induced propulsion into a collection vessel (Vogel et al., 2007).  
LCM was used to isolate mitochondria from single cells and  
from subcellular foci, to investigate the spread of clonal 
expansion of mtDNA mutations a (Trifunov et al., 2018;  
Vincent et al., 2018).

Optical tweezers (OT) are capable of simultaneously lysing 
cells, whilst trapping subcellular organelles within a focused 
laser beam, with nanoscale precision (König et al., 2005; Reiner 
et al., 2010). LCM and OT are exciting techniques for isolat-
ing mitochondria within a specific cell, demonstrating not only 
the means to retain cellular provenance but also demonstrating 
cellular and subcellular precision (König et al., 2005; Vincent  
et al., 2018). However, laser induced damage to mitochondrial 
and mtDNA damage when targeting smaller areas limits the  
effectiveness of LCM and OT in serial sampling and isolating  
mitochondria from smaller subcellular foci (Botchway et al.,  
2010; Vincent et al., 2018). Alongside flow cytometry based  
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methods, LCM and OT are gold standard techniques used 
for mitochondrial isolation for understanding mitochondrial  
heterogeneity at the single-cell level.

Nanoprobe based techniques
Nanotechnologies show great promise to enable mitochondrial 
isolation at the subcellular level (Laforge et al., 2007). Whilst 
micromanipulators incorporating micropipettes have been shown 
to successfully isolate and transplant nuclei (Hyslop et al., 2016), 
a challenge for this technology has been the ability to sample 
smaller subcellular structures (Jeffries et al., 2007). Nanoscale 
probes can allow the manipulation of biomolecules and organelles 
in a non-invasive manner with greater spatial precision compared 
to their microscale counterparts. Nanoprobes cause minimal per-
turbation to cell viability or their natural cellular environment, 
allowing for longitudinal sampling of mitochondria and ena-
bling the comparison of mitochondrial heterogeneity between 
and within foci of deficiency (Actis, 2018). Four key methods 
for nanomanipulation of cytoplasmic contents have been devel-
oped: nanobiopsy, where cellular contents are aspirated within 
a nanopipette using an applied voltage; fluid-force microscopy  
(FluidFM), where an atomic force microscope (AFM) probe, con-
taining a nanofluidic channel, enables pressure-driven sampling 
from living cells; dielectrophoreticnanoprobes, where an applied 
high-frequency AC is used to trap and manipulate organelles 
and biomolecules within living cells; and nanoelectroporation, 

where cells are grown on an array of channels and a transient 
electrical current causes temporary pore formation in the cellu-
lar membrane, allowing sampling from the cytoplasm (Ino et al., 
2018). So far only nanobiopsy and nanotweezers (NT), which 
harnesses dielectrophoresis, have been demonstrated to isolate  
mitochondria (Actis et al., 2014a; Nadappuram et al., 2019).

Nanobiopsy. Nanopipettes are nanoprobes that are readily 
and reproducibly fabricated from glass capillaries using a laser 
puller (Laforge et al., 2007). Nanopipettes can be integrated 
within nanomanipulators to comprise a scanning ion conductance  
microscope (SICM), which allows for the high resolution  
topographical mapping of living cells and tissues (Novak et al., 
2009). The nanobiopsy approach relies on electrowetting, within 
a nanopipette, to extract cytoplasmic material from living cells. 
Electrowetting is a physical effect where the wetting, or interac-
tion of a liquid with another surface, across two interfaces, can 
be controlled via an externally applied voltage. If a nanopipette 
is filled with an organic solution and immersed in an aqueous 
solution a liquid-liquid interface is formed at the nanopipette tip 
(Laforge et al., 2007). Depending on the voltage applied, aque-
ous solution can be drawn or expelled from the nanopipette (Dale 
& Unwin, 2008). Electrowetting within the cytoplasm of a living 
cell allows cytosol and organelles to be aspirated (Actis et al.,  
2014a; Figure 1). Successful aspiration of mitochondria has 
been reported using nanobiopsy. This was demonstrated by the  

Figure 1. Mitochondrial nanobiopsy. Nanobiopsy is carried out using a nanopipette, filled with organic solvent, that is incorporated into  
a Scanning Ion Conductance Microscope (SICM) system which consists of an amplifier, that modulates and detects extremely small  
changes in current, as well as piezo motors that allow for highly precise movement of the nanopipette to and within the  
area of interest. This can be used with cultured cells (a–c) or in tissue (d–f). (a, d) To function, the SICM requires the nanopipette to be  
immersed in an aqueous solution. Whilst being lowered, the SICM system constantly measures the current through the nanopipette tip.  
If the current magnitudes drops below a predetermined threshold, this will result in negative feedback causing the nanopipette to stop 
typically within 1µm of the cell of interest. At this point the nanopipette be lowered at high speed to penetrate the cell membrane, whilst 
a small positive voltage (200mV) is applied to prevent premature aspiration of the cytosolic components.  (b,e) Once within the cell and at 
the area of interest, application of a small voltage (-200mV) allows for the aspiration of mitochondria within the cytosol as a result of the 
phenomenon of electrowetting. (c,f) After successful aspiration of mitochondria, reapplication of a positive voltage (100mV) prevents further 
aspiration but allows retention of the collected sample. The sample can then be transferred to a collection vessel where the sample can be 
expelled at a higher voltage (1V).
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presence of MitoTracker green, a mitochondrial matrix specific 
fluorescent dye, in the nanopipette tip, a reduction in fluorescence 
in the biopsied area and successful sequencing of mtDNA acquired 
from the biopsy (Actis et al., 2014a). Dependent on the target cell 
and the pipette geometry, fine tuning of the electrowetting settings 
is necessary (Actis et al., 2014b; Seger et al., 2012). The precise 
volume aspirated or expelled can be determined, and therefore 
controlled, by measuring the nanopipette resistance during nano-
biopsy. A drawback of nanobiopsy is that the use of an organic 
solvent within the nanopipette does not allow the acquisition of 
topographical images because of the low signal-noise ratio. To be  
able to properly take advantage of the fine placement of the  
nanopipette, a double barrel pipette - filled with aqueous and 
organic solutions respectively, would be required so that scan-
ning and electrowetting could be performed simultaneously (Seger  
et al., 2012). For biopsies taken from tissue, a possible alter-
native could be either the pre- or post-biopsy topographical  
scanning of the area of interest. Nanobiopsy is highly opti-
mised for the highly-precise isolation of small mitochondrial 
subpopulations either from subcellular foci or for longitudinal  
sampling of mitochondria from the same cell. Whilst this has been 
demonstrated in cultured cells this has yet to be demonstrated  
in tissue.

Nanotweezers. Dielectrophoretic nanotweezers (DENT) were 
first introduced as an adaption of AFM, where by employing 

dielectrophoresis, mRNA could be selectively targeted and  
captured with minimal impact to cell viability. DENT utilises 
a nanoprobe consisting of a closely distanced silicon core and 
a metal alloy layer which serve as inner and outer electrodes 
(Nawarathna et al., 2009). Application of an AC between the  
inner and outer electrodes results in an electrical field suffi-
cient to prompt polarisable subcellular molecules to become 
induced dipoles that are trapped at the probe tip (Ramos et al.,  
1999). A dielectrophoretic force can be intensified by increas-
ing the voltage or decreasing the distance between the two elec-
trodes, since the force is proportionate to V2d−3 (V being voltage; 
d being distance). An inter-electrode distance of <20nm enabled 
authors to achieve a dielectrophoretic force sufficient to capture 
a single mitochondrion at a physiologically viable ionic strength, 
with a NT probe incorporated into a micromanipulator sys-
tem. Successful acquisition of healthy mitochondria was shown 
through a reduction in localised tetramethylrhodamine methyl 
ester fluorescent dye post-acquisition (Nadappuram et al., 2019;  
Figure 2). Like nanobiopsy, NT are capable of sampling subcel-
lular biomolecules with high spatial resolution with minimal 
impact on cell and organelle viability. A potential disadvantage of 
the NT format could be the manner in which samples are retained 
at the end of the nanotweezers probe, similar to a holding pipette. 
Without protection from the pipette tip, the sample would be 
exposed and prone to physical trauma or loss when being trans-
ferred from the cell to collection vessel (Imura et al., 2002;  

Figure 2. Nanotweezers. The nanotweezers tip is inserted into a cell and then application of an alternating current (A.C.) results in a 
localised electric field that traps biomolecules at the probe tip through dielectrophoretic (DEP). This DEP force is strong enough to capture 
nucleic acids and mitochondria in solution. Once captured the molecules can then we withdrawn from out of the cell of interest with the 
removal of the nanotweezers and transferred to a collection vessel. The applied DEP force is reversible and turning off the A.C. results in 
the release of the captured biomolecules.
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Nadappuram et al., 2019). Loss of nucleic acid samples can be  
circumvented through use of specific oligonucleotide probes 
at the tip of the nanotweezers, to hybridised and trap mRNA or 
DNA isolated through dielectrophoresis and leading to the sug-
gestion that this technique has a greater propensity for mRNA  
isolation or even cell-free mtDNA, though nanotweezers still  
offer great promise for mitochondrial isolation (Nadappuram  
et al., 2019; Nawarathna et al., 2009).

Fluid-Force Microscopy. FluidFM is another adaptation of AFM. 
AFM works using a cantilever, which moves relative to the changes 
in depth of a given surface either through direct contact, tapping 
or oscillating just above the surface (Verbiest & Rost, 2016).  
The movement of the cantilever is measured by a laser which 
produces a 3-D image of the surface and negative feedback con-
trol of a piezo motor allows adjustment of the probe position  
(Guillaume-Gentil et al., 2016; Uehara et al., 2004). The unique 
feature of FluidFM is that it utilizes a hollow AFM tip coupled 
with a pressure regulator that allows the manipulation of liquid in 
and around cells with high precision. During FluidFM, the AFM 
tip is lowered into the cell and held with a predetermined force 
(~550nN) to allow capture of cellular contents by applying nega-
tive pressure (-800mbar) (Guillaume-Gentil et al., 2016). Whilst 
Guillaume-Gentil and colleagues did test whether mitochon-
dria could be isolated using FluidFM, a negligible reduction in 
MitoTracker Green likely indicates that this was unsuccessful. 
Authors concede that lack of success could have been because 
of probe aperture size was insufficient to capture mitochondria 
within an interconnected network. Like nanobiopsy and NT, 
FluidFM minimally impacts on cell viability. Also, like nanobiopsy, 
AFM allows precise placement of the AFM probe in a cellular 
localisation, though not with the same precision afforded by 
SICM. A ‘snap’ phenomenon, caused by the intermolecular forces 
acting on the AFM probe as it approaches the cellular mem-
brane, can cause loss of control of the probe, reducing sampling 
accuracy (Uehara et al., 2004; Verbiest & Rost, 2016). 
FluidFM also prioritises high sampling resolution above yield 
and should successful isolation of mitochondria be demonstrated 
using Fluid FM, it would fit into a similar niche to nanobiopsy 
and NT isolating mitochondria within subcellular foci.

Overview of micro- and nanoscale mitochondrial 
isolation techniques
Microfluidic techniques are promising, being high-throughput 
and the microfluidic devices themselves are inexpensive. 
However, adapting existing platforms for microfluidics is less 
cost effective and has resulted in slower development and adop-
tion of microfluidic techniques (Sonker et al., 2017). Of the 
more developed micro- and nanoscale techniques, flow cytom-
etry based methods appear quicker, higher throughput and dem-
onstrate the greatest yield, though may impair mitochondrial  
viability (Pflugradt et al., 2011). Whilst LCM and OT can poten-
tially result in photodamage to mtDNA, careful consideration of 
cutting parameters can negate this (Keloth et al., 2018). Some 
macro- and microscale techniques may be able to separate mito-
chondrial subpopulations but lack the spatio-temporal range to 
isolate and contextualise mitochondrial subpopulations in their 
natural cellular environment, which affects our ability to fully 

understand the cellular conditions that contribute to mitochondrial 
heterogeneity and dysfunction (Lanza & Nair, 2009; Moutaux  
et al., 2018).

Nanoprobes allow a means of isolating mitochondria with 
superior sampling specificity whilst being minimally inva-
sive to the cell – preserving the viability of live cells and the 
native environment of the mitochondria (Actis et al., 2014a; 
Nadappuram et al., 2019). It is suggested that nanobiopsy 
lacks specificty in the cytoplasmic contents sampled (Actis et al.,  
2014a; Nadappuram et al., 2019). However, nanoscale adjustment  
of the nanopipette position above the area of interest, using 
an SICM system guided by topographical scanning in  
addition to optical confirmation alone, enables highly precise 
movement and mitochondrial capture allowing for a superior  
sampling specificity using nanobiopsy (Seger et al., 2012).  
‘Microbiospy’ of mitochondria in vivo has been demonstrated 
using a micropipette incorporated into a micromanipulator  
(Morris et al., 2017). Whilst the data from this study is certainly 
valuable, the method was limited by poor control of aspirated 
volumes and the inability to contextualise labelled mitochon-
dria without a secondary mode of visualising the location of the 
pipette relative to labelled mitochondria. This indeed is a common 
limitation of both NT and other micromanipulator based meth-
ods of mitochondrial isolation. Mitochondria can be as large 2µm 
in diameter (Imura et al., 2002). Incorporation of micropipettes 
within an SICM system may enable the positioning of the pipette 
to the mitochondrial sub-population of interest with the same 
nanoscale level of precision, achieved through the combination of 
topographical scanning and optical visualisaton, but the larger 
pore size would guard against sampling bias favouring smaller 
mitochondrial subpopulations.

NT preferentially captures polarisable molecules. Whilst this 
enables a degree of selectivity, this may also lead to increased 
contamination, especially from non-specific capture of nucleic  
acids (Nadappuram et al., 2019). Use of a ‘physiologically safe’ 
current, stated as being less than the total current of all ion chan-
nels in a given cell, also prevents direct damage to the sampled 
mitochondria (Laforge et al., 2007). Whilst not necessarily a disad-
vantage, nanobiopsy and NT both require samples to be immersed 
in ionic solution (Actis, 2018). FluidFM, conversely, can be 
adapted to faciliate high-throughput sampling by connecting the 
AFM probe to a microchannel and can be carried out in or out of 
solution (Kang et al., 2016; Meister et al., 2009). Whilst as of yet,  
there has only been a modest number of examples demonstrat-
ing isolation of mitochondria using nanotechnologies, pioneering 
proof-of-principle study data does make the future development  
of nanotechnologies for mitochondrial isolation an exciting 
prospect. Whilst sampling of mitochondria, from within foci 
of deficiency in tissue, has yet to be demonstrated this provides  
the next challenge for nanotechnologies going forward.

Concluding remarks
Mitochondrial isolation can be organised into three general  
categories based on their sampling resolution: macroscale, micro-
scale and nanoscale. Macroscale and microfluidic techniques are 
most useful for respective large or small-scale studies investigating 
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mitochondrial heterogeneity, or a particular mechanism in  
mitochondrial dysfunction, at the tissue and organ level (Brand &  
Nicholls, 2011); LCM, OT and nanoprobe based techniques, 
however, are designed to acertain information on mitochondrial 
heterogeneity at the cellular and subceullar level. The latter will 
ultimately help us to understand how mitochondrial dysfunction 
may originate and spread (Picard et al., 2011; Vincent & Picard, 
2018). Whilst mitochondrial isolation has only been demonstrated 
using nanobiopsy and NT, asides FluidFM, other nanoprobe 
techniques have potential utility for mitochondrial isolation. The  
“mille-feuille” probe, like its namesake, contains alternating 
aqueous and organic phase layers, allowing continuous sampling 
through nano-electrophoresis (Ito et al., 2017). Nanoneedles 
and nanostraws offer the potential for longitudinal analysis of 
mitochondria from cells, cultured directly on top of these nanos-
tructures, and sampling is achieved through laser-induced 
poration or electroporation of the cell membrane and high 
throughput isolation with a similar level of precision (Cao et al., 
2019; Chiappini et al., 2015).

The usefulness of nanoprobe techniques is not limited to  
isolating mitochondria. The ability to aspirate and inject using 
nanoprobes has great therapeutic potential, including the  
injection of mitochondria at precise cellular locations for the  

purposes of experimentation but also the eventual possibility for 
use in mitochondrial targeted therapies, building upon existing 
mitochondrial transfer techniques whilst avoiding ‘mitochondrial 
carryover’ (Hudson et al., 2019; Hyslop et al., 2016; Seger et al.,  
2012). Mitochondrial fractionationation based techniques 
are still the most extensively used, but other technologies are 
catching up in terms of popularity and development. This is 
in part driven by the need to better understand mitochondrial 
physiology and pathophysiology with subcellular precision 
(Picard et al., 2011), but also coincides with the transition of 
cellular biology from era of ‘single-cell omics’ to that of 
‘subceullar omics’. No single technique is all-encompassing, 
in aiding our understanding of mechanisms of mitochondrial 
dysfunction, instead each has objective superiority. Nanoprobe 
based technologies are a great addition to the arsenal of mito-
chondrial isolation methods and their continued development is 
opening up an entirely new avenue of research into the spread 
of mitochondrial dysfunction at the subcellular level. This will 
ultimately help us better understand the bigger picture of 
mitochondrial heterogeneity and dysfunction.

Data availability
Underlying data
No data are associated with this article.
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This is a very well-written manuscript that presents a scope of mitochondrial isolation techniques. 
In the mini-review “Mitochondrial isolation: when size matters” the authors performed a 
comprehensive analysis of past and current technologies for mitochondria isolation focusing on 
the recent advances in micro and nanoscale isolation procedures. This is a timely review on a very 
important topic. I have no major conceptual criticism, but the following points should be clarified: 

In the table, on pages 6-8 multiple abbreviations should be avoided for the sake of clarity. 
There is plenty of space to include a full description of the procedure (columns one and 
two). Other columns containing only plus and minus signs can be significantly decreased in 
width. This would be beneficial for a reader who might not be familiar with a new system of 
abbreviations. 
 

1. 

In the table’s “confirmation” column several approaches for validating successful isolation 
are mentioned, however, there is no mentioning of cytochrome spectra or 
activity/respiration measurements. These methods are still widely used and represent the 
golden standard for confirming the quality of the preparation. 
 

2. 

It is clear that Figures 1 and 2 show the principal schematics of the experimental setup of 
nanobiopsies and nanotweezers. However, for a better display, it would be good to put 
things to the scale. For example, in Fig 2 nanotweezers are schematically shown. The end tip 
diameter is labeled as 60-100 nm and the nucleus is roughly the same size on the picture, 
while in reality, it is ~5000 nm. Mitochondria are 200-400 nm in diameter but shown as 
smaller than 60nm. 
 

3. 

The authors only briefly mentioned two references when discussing centrifugation. A more 
detailed analysis would significantly increase the interest in that minireview. There is a huge 
number of experimental papers, protocols, and reviews on the topic of differential 
centrifugation and this method is still one of the most commonly used and accepted in the 
field. Alternatively, a reference to an appropriate book or Methods in Enzymology volume 
can be given.

4. 
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This reviewer cannot comment on the methodology of nanoscale isolation. In my opinion, the 
scope of the present manuscript fits very well with the audience of the Wellcome Open Research, 
and it can be accepted for indexing.
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Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Mitochondrial physiology

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard.

Version 1

Reviewer Report 09 October 2020

https://doi.org/10.21956/wellcomeopenres.17912.r40691

© 2020 Chiappini C. This is an open access peer review report distributed under the terms of the Creative 
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited.

Ciro Chiappini   
1 Centre for Craniofacial and Regenerative Biology, King’s College London, London, UK 
2 London Centre for Nanotechnology, London, UK 

The article provides an interesting and insightful overview of the existing and emerging 
approaches to harvesting mitochondria from cells and tissues. The topic is highly timely and of 
great interest given recent advances in our ability to extract, manipulate and transfer 
mitochondria which promise significant improvements in mithocondria-based therapies in the 
coming future. 
 
The different available and emerging approaches are discussed in sufficient length and well 
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compared, with clear and useful tables to highlight and compare their relative strengths and 
limitations. 
 
The focus on the microscale and nanoscale isolation techniques is particularly useful, providing a 
clear overview of these emerging technologies, their state of advancement and their potential for 
the future. 
 
Only minor suggestions are made on one side to improve the readability of the article and on the 
other side to provide further insight into future developments and challenges for the emerging 
techniques reviewed.

The abstract can be reformulated to improve its flow. "Whilst" should not be followed by a 
comma. In the same sentence, due to the structure, it's unclear whether single cell 
technologies refers to mitochondrial isolation technologies or broadly single-cell analysis 
technologies, and it makes a significant difference if one or the other. Reformulating the 
entire sentence could help a more unambiguous interpretation. The final sentence is also 
fairly complex and requires careful reading to extract the correct meaning. Possibly splitting 
it into two would help a more direct interpretation. Particularly the - from subcellular 
compartment - interjection is of difficult placement. 
 

1. 

The sentence "due to nuclear mutations that lead to mtDNA mutation formation 
throughout life." would benefit from clarification. Is it meant due to nuclear [genetic 
material/DNA] mutations? Otherwise what other mutations are involved? also, maybe worth 
adding an explanatory sentence regarding how the nuclear mutations lead to mtDNA 
mutation (and possibly heterogeneity). 
 

2. 

The term OXPHOS is not defined before it is introduced. 
 

3. 

CE-LIF acronym is not defined before introducing. only CE is defined. 
 

4. 

In Table 1 the lower-and/or higher sign (plus-minus) does not appear to be used in the 
table, so it would be better to removed from the caption as well. 
 

5. 

Please expand on the following statement by indicating the approach to achieve superior 
positional placement through SICM in a practical system involving mitochondrial 
extraction. "positional placement using an SICM system guided by topographical scanning 
rather that just optical confirmation alone, would suggest that Nano biopsy would have a 
superior sampling specificity (Seger et al., 2012)." 
 

6. 

Please expand on the following statement by indicating the logistics of integrating 
SICM with large pipettes and the contrast to conventional micromanipulator-operated 
micropipettes. Interestingly, since mitochondria can be as large 2µm in diameter (Imura et 
al., 2002), incorporation of micropipettes within an SICM system may enable nanoscale 
precision but also guards against sampling bias favouring smaller mitochondrial 
subpopulations. 
 

7. 

It would be very valuable either in the concluding remarks to discuss key early potential 
applications for nano-isolation techniques, their range of applicability, the limits of such 
range and the outstanding challenges to achieve the first practical uses. e.g.. in vivo? What 

8. 
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downstream analysis would this approach be compatible with? What are the challenges 
associated with the need to investigate intracellular heterogeneity which by definition 
would employ very limited amounts of biological materials, and what emerging approaches 
in the analytical field are emerging to address them? What avenues are accessible to 
increase yield/purity/throughput for these technologies? 
 
Further insightful discussions for the conclusion sections would be: In the context of the 
omics discussion already presented, what could be an avenue for integration of these 
technologies? Mitochondrial transfer applications are highly exciting. What are potential 
strategies to achieve them using nano approaches? What barriers still exist to prove the 
feasibility of mitochondrial injection with a nanoprobe?
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