246 research outputs found
Visualizing the microscopic coexistence of spin density wave and superconductivity in underdoped NaFe1-xCoxAs
Although the origin of high temperature superconductivity in the iron
pnictides is still under debate, it is widely believed that magnetic
interactions or fluctuations play an important role in triggering Cooper
pairing. Because of the relevance of magnetism to pairing, the question of
whether long range spin magnetic order can coexist with superconductivity
microscopically has attracted strong interests. The available experimental
methods used to answer this question are either bulk probes or local ones
without control of probing position, thus the answers range from mutual
exclusion to homogeneous coexistence. To definitively answer this question,
here we use scanning tunneling microscopy to investigate the local electronic
structure of an underdoped NaFe1-xCoxAs near the spin density wave (SDW) and
superconducting (SC) phase boundary. Spatially resolved spectroscopy directly
reveal both the SDW and SC gap features at the same atomic location, providing
compelling evidence for the microscopic coexistence of the two phases. The
strengths of the SDW and SC features are shown to anti correlate with each
other, indicating the competition of the two orders. The microscopic
coexistence clearly indicates that Cooper pairing occurs when portions of the
Fermi surface (FS) are already gapped by the SDW order. The regime TC < T <
TSDW thus show a strong resemblance to the pseudogap phase of the cuprates
where growing experimental evidences suggest a FS reconstruction due to certain
density wave order. In this phase of the pnictides, the residual FS has a
favorable topology for magnetically mediated pairing when the ordering moment
of the SDW is small.Comment: 18 pages, 4 figure
Are citations from clinical trials evidence of higher impact research? An analysis of ClinicalTrials.gov
An important way in which medical research can translate into improved health outcomes is by motivating or influencing clinical trials that eventually lead to changes in clinical practice. Citations from clinical trials records to academic research may therefore serve as an early warning of the likely future influence of the cited articles. This paper partially assesses this hypothesis by testing whether prior articles referenced in ClinicalTrials.gov records are more highly cited than average for the publishing journal. The results from four high profile general medical journals support the hypothesis, although there may not be a cause-and effect relationship. Nevertheless, it is reasonable for researchers to use citations to their work from clinical trials records as partial evidence of the possible long-term impact of their research
The speed of parietal theta frequency drives visuospatial working memory capacity
The speed of theta brain oscillatory activity is thought to play a key role in determining working memory (WM) capacity. Individual differences in the length of a theta cycle (ranging between 4 and 7 Hz) might determine how many gamma cycles (>30 Hz) can be nested into a theta wave. Gamma cycles are thought to represent single memory items; therefore, this interplay could determine individual memory capacity. We directly tested this hypothesis by means of parietal transcranial alternating current stimulation (tACS) set at slower (4 Hz) and faster (7 Hz) theta frequencies during a visuospatial WM paradigm. Accordingly, we found that 4-Hz tACS enhanced WM capacity, while 7-Hz tACS reduced WM capacity. Notably, these effects were found only for items presented to the hemifield contralateral to the stimulation site. This provides causal evidence for a frequency-dependent and spatially specific organization of WM storage, supporting the theta–gamma phase coupling theory of WM capacity
Spectroscopic follow-up of a subset of the Gaia/IPHAS catalogue of Hα-excess sources
State-of-the-art techniques to identify Hα emission-line sources in narrow-band photometric surveys consist of searching for Hα excess with reference to nearby objects in the sky (position-based selection). However, while this approach usually yields very few spurious detections, it may fail to select intrinsically faint and/or rare Hα-excess sources. In order to obtain a more complete representation of the heterogeneous emission-line populations, we recently developed a technique to find outliers relative to nearby objects in the colour–magnitude diagram (CMD-based selection). By combining position-based and CMD-based selections, we built an updated catalogue of Hα-excess candidates in the Northern Galactic Plane. Here, we present spectroscopic follow-up observations and classification of 114 objects from this catalogue that enables us to test our novel selection method. Out of the 70 spectroscopically confirmed Hα-emitters in our sample, 15 were identified only by the CMD-based selection, and would have been thus missed by the classic position-based technique. In addition, we explore the distribution of our spectroscopically confirmed emitters in the Gaia CMD. This information can support the classification of emission-line sources in large surveys such as the upcoming WEAVE and 4-m Multi-Object Spectroscopic Telescope, especially if augmented with the introduction of other colours
The link between volcanism and plutonism in epizonal magma systems; high-precision U–Pb zircon geochronology from the Organ Mountains caldera and batholith, New Mexico
The Organ Mountains caldera and batholith expose the volcanic and epizonal plutonic record of an Eocene caldera complex. The caldera and batholith are well exposed, and extensive previous mapping and geochemical analyses have suggested a clear link between the volcanic and plutonic sections, making this an ideal location to study magmatic processes associated with caldera volcanism. Here we present high-precision thermal ionization mass spectrometry U–Pb zircon dates from throughout the caldera and batholith, and use these dates to test and improve existing petrogenetic models. The new dates indicate that Eocene volcanic and plutonic rocks in the Organ Mountains formed from ~44 to 34 Ma. The three largest caldera-related tuff units yielded weighted mean [superscript 206]Pb/[superscript 238]U dates of 36.441 ± 0.020 Ma (Cueva Tuff), 36.259 ± 0.016 Ma (Achenback Park tuff), and 36.215 ± 0.016 Ma (Squaw Mountain tuff). An alkali feldspar granite, which is chemically similar to the erupted tuffs, yielded a synchronous weighted mean [superscript 206]Pb/[superscript 238]U date of 36.259 ± 0.021 Ma. Weighted mean [superscript 206]Pb/[superscript 238]U dates from the larger volume syenitic phase of the underlying Organ Needle pluton range from 36.130 ± 0.031 to 36.071 ± 0.012 Ma, and the youngest sample is 144 ± 20 to 188 ± 20 ka younger than the Squaw Mountain and Achenback Park tuffs, respectively. Younger plutonism in the batholith continued through at least 34.051 ± 0.029 Ma. We propose that the Achenback Park tuff, Squaw Mountain tuff, alkali feldspar granite and Organ Needle pluton formed from a single, long-lived magma chamber/mush zone. Early silicic magmas generated by partial melting of the lower crust rose to form an epizonal magma chamber. Underplating of the resulting mush zone led to partial melting and generation of a high-silica alkali feldspar granite cap, which erupted to form the tuffs. The deeper parts of the chamber underwent continued recharge and crystallization for 144 ± 20 ka after the final eruption. Calculated magmatic fluxes for the Organ Needle pluton range from 0.0006 to 0.0030 km3/year, in agreement with estimates from other well-studied plutons. The petrogenetic evolution proposed here may be common to many small-volume silicic volcanic systems
Recommended from our members
Toward a Robust Estimation of Respiratory Rate From Pulse Oximeters.
GOAL: Current methods for estimating respiratory rate (RR) from the photoplethysmogram (PPG) typically fail to distinguish between periods of high- and low-quality input data, and fail to perform well on independent "validation" datasets. The lack of robustness of existing methods directly results in a lack of penetration of such systems into clinical practice. The present work proposes an alternative method to improve the robustness of the estimation of RR from the PPG. METHODS: The proposed algorithm is based on the use of multiple autoregressive models of different orders for determining the dominant respiratory frequency in the three respiratory-induced variations (frequency, amplitude, and intensity) derived from the PPG. The algorithm was tested on two different datasets comprising 95 eight-minute PPG recordings (in total) acquired from both children and adults in different clinical settings, and its performance using two window sizes (32 and 64 seconds) was compared with that of existing methods in the literature. RESULTS: The proposed method achieved comparable accuracy to existing methods in the literature, with mean absolute errors (median, 25[Formula: see text]-75[Formula: see text] percentiles for a window size of 32 seconds) of 1.5 (0.3-3.3) and 4.0 (1.8-5.5) breaths per minute (for each dataset respectively), whilst providing RR estimates for a greater proportion of windows (over 90% of the input data are kept). CONCLUSION: Increased robustness of RR estimation by the proposed method was demonstrated. SIGNIFICANCE: This work demonstrates that the use of large publicly available datasets is essential for improving the robustness of wearable-monitoring algorithms for use in clinical practice
The Gaia/IPHAS and Gaia/KIS value-added catalogues
We present a sub-arcsecond crossmatch of Gaia DR2 against the INT Photometric H α Survey of the Northern Galactic Plane Data Release 2 (IPHAS DR2) and the Kepler-INT Survey (KIS). The resulting value-added catalogues (VACs) provide additional precise photometry to the Gaia photometry (r, i, and H α for IPHAS, with additional U and g for KIS). In building the catalogue, proper motions given in Gaia DR2 are wound back to match the epochs of IPHAS DR2, thus ensuring high proper motion objects are appropriately crossmatched. The catalogues contain 7927 224 and 791 071 sources for IPHAS and KIS, respectively. The requirement of >5σ parallax detection for every included source means that distances out to 1–1.5 kpc are well covered. We define two additional parameters for each catalogued object: (i) fc, a magnitude-dependent tracer of the quality of the Gaia astrometric fit; (ii) fFP, the false-positive rate for parallax measurements determined from astrometric fits of a given quality at a given magnitude. Selection cuts based on these parameters can be used to clean colour–magnitude and colour–colour diagrams in a controlled and justified manner. We provide both full and light versions of the VAC, with VAC-light containing only objects that represent our recommended trade-off between purity and completeness. Uses of the catalogues include the identification of new variable stars in the matched data sets, and more complete identification of H α-excess emission objects due to separation of high-luminosity stars from the main sequence
Recommended from our members
Evaluation of urban local-scale aerodynamic parameters: implications for the vertical profile of wind speed and for source areas
Nine methods to determine local-scale aerodynamic roughness length (z0) and zero-plane displacement (zd) are compared at three sites (within 60 m of each other) in London, UK. Methods include three anemometric (single-level high frequency observations), six morphometric (surface geometry) and one reference-based approach (look-up tables). A footprint model is used with the morphometric methods in an iterative procedure. The results are insensitive to the initial zd and z0 estimates. Across the three sites, zd varies between 5 – 45 m depending upon the method used. Morphometric methods that incorporate roughness-element height variability agree better with anemometric methods, indicating zd is consistently greater than the local mean building height. Depending upon method and wind direction, z0 varies between 0.1 and 5 m with morphometric z0 consistently being 2 – 3 m larger than the anemometric z0. No morphometric method consistently resembles the anemometric methods. Wind-speed profiles observed with Doppler lidar provide additional data with which to assess the methods. Locally determined roughness parameters are used to extrapolate wind-speed profiles to a height roughly 200 m above the canopy. Wind-speed profiles extrapolated based on morphometric methods that account for roughness-element height variability are most similar to observations. The extent of the modelled source area for measurements varies by up to a factor of three, depending upon the morphometric method used to determine zd and z0
Superconductivity at 5 K in potassium doped phenanthrene
Organic materials are believed to be potential superconductor with high
transition temperature (TC). Organic superconductors mainly have two families:
the quasi-one dimensional (TMTSF)2X and two dimensional (BEDT-TTF)2X (Ref. 1
and 2), in which TMTSF is tetramethyltetraselenafulvalene (C10H12Se4) and
BEDT-TTF or "ET" is bis(ethylenedithio)tetrathiafulvalene (C10H8S8). One key
feature of the organic superconductors is that they have {\pi}-molecular
orbitals, and the {\pi}-electron can delocalize throughout the crystal giving
rise to metallic conductivity due to a {\pi}-orbital overlap between adjacent
molecules. The introduction of charge into C60 solids and graphites with
{\pi}-electron networks by doping to realize superconductivity has been
extensively reported3,4. Very recently, superconductivity in alkali-metal doped
picene with {\pi}-electron networks was reported5. Here we report the discovery
of superconductivity in potassium doped Phenanthrene with TC~5 K. TC increases
with increasing pressure, and the pressure of 1 GPa leads to an increase of 20%
in TC, suggesting that the potassium doped phenanthrene shows unconventional
superconductivity. Both phenanthrene and picene are polycyclic aromatic
hydrocarbons, and contain three and five fused benzene rings, respectively. The
ribbon of fused benzene rings is part of graphene. Therefore, the discovery of
superconductivity in K3Phenanthrene produces a novel broad class of
superconductors consisting of fused hydrocarbon benzene rings with
{\pi}-electron networks. The fact that TC increases from 5 K for KxPhenanthrene
with three benzene rings to 18 K for Kxpicene with five benzene rings suggests
that such organic hydrocarbons with long benzene rings is potential
superconductor with high TC.Comment: 20 pages, 3 figures, one supplementary information. submitted to
Nature Communication
Chronic Illness with Complexity: Implications for Performance Measurement of Optimal Glycemic Control
- …
